首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
《矿冶》2014,(4)
以锌烟灰硫酸化焙烧—浸出得到的浸出液为原料,采用P204萃铟、丹宁酸沉锗的方法实现了溶液中铟、锗的提取。以P204为萃取剂,盐酸溶液为反萃剂,铟的萃取率、反萃率均大于99%。铟萃余液用丹宁酸沉锗,最佳条件下的锗沉淀率大于99%。  相似文献   

2.
从氨性溶液中萃取分离铜、钴的研究   总被引:8,自引:0,他引:8  
陈永强  邱定蕃  王成彦  尹飞  王忠 《矿冶》2003,12(3):61-63,45
研究了不同萃取剂从氨性溶液中分离铜、钴的过程。采用LIX984N作萃取剂,经一级萃取,溶液中铜的萃取率大于99%;用180g/L硫酸溶液对负载有机相进行反萃,经二级逆流反萃,铜的反萃率达99%以上。采用LIX54-100作萃取剂,经过四级逆流萃取铜的萃取率达到99 53%;用30g/L硫酸溶液对负载有机相进行反萃,经一级反萃,铜的反萃率大于99 9%。在上述萃取过程中,钴均不被萃取。  相似文献   

3.
以韶关冶炼厂真空炉渣氧压浸出液为原料,以P204及Rex t-32为萃取剂萃取分离与富集锗组分,考察萃取有机相组成、酸度pH、萃取时间、相比等因素,对锗分离与富集效果的影响.研究结果表明:pH=2.0,相比V (O)/V (W)=1∶1,萃取10 min ,一次萃取锗萃取率达96.89,;富锗有机相用4mol/L氢氧化钠溶液反萃锗,相比V (O )/V (W )=3∶1,反萃15 min ,经3级反萃后反萃液中锗含量为7.81 g/L,反萃率为95.37,(以渣计);锗反萃液用1∶1硫酸中和,控制终点pH为8.0~8.5,可得到品位为37.62,的富锗料,锗沉淀率为90.51,.  相似文献   

4.
为解决湿法炼锌硫酸锌溶液中传统溶剂萃取回收铟过程需使用高浓度盐酸反萃,且反萃后贫有机相中夹带氯离子危害湿法炼锌的难题.采用P204-TOPO混合萃取体系从含铟浸出液中选择性萃取铟,载铟有机相采用硫酸反萃,实现无氯体系回收铟.研究发现,混合体系萃取铟过程属于阳离子交换,TOPO与P204发生缔合作用,减弱了P204与铟离...  相似文献   

5.
采用D2EHPA-TBP-磺化煤油混合体系萃取-硫酸反萃-酸性铵盐沉钒方法从石煤酸浸液中分离、回收五氧化二钒。结果表明:在酸性介质中钒萃取率取决于溶液pH值,当溶液初始pH值≤2.5,钒萃取率高,杂质离子不发生水解沉淀,利于钒的分离、富集。以10%D2EHPA、5%TBP、85%磺化煤油的有机相做萃取剂,在相比为1∶1,溶液初始pH值2.45的条件下,经7级逆流萃取,钒的萃取率为96.7%。以1.5mol/L的硫酸溶液做反萃取剂,在相比(O/A)为5∶1的条件下,负载有机相经3级逆流反萃取,钒的反萃率大于99%,采用酸性铵盐沉钒,在550℃条件下煅烧脱氨后得到的五氧化二钒产品纯度为99.01%。  相似文献   

6.
以P204为萃取剂、硫酸溶液为反萃剂,在室温下对贵州某钼镍钒多金属矿石的镍钒浸出液进行钒的萃取-反萃取试验,确定了萃取时适宜的工艺参数为母液pH=2.5,有机相中P204、TBP、磺化煤油的体积比=20∶5∶75,相比(O/A)=1∶2,萃取时间5 min,反萃取时适宜的工艺参数为硫酸溶液浓度2 mol/L、相比(O/A)=2∶1、反萃时间4 min。在所确定的工艺参数下进行5级萃取-反萃取,钒的总萃取率达98.7%、总反萃率达99.8%、总回收率达98.5%。  相似文献   

7.
以陕西某石煤酸浸含钒上清液为原料, 先用石灰乳中和、硫代硫酸钠还原预处理, 采用P204+TBP+磺化煤油萃取体系萃取富集、纯化五氧化二钒浸出液; 采用不同酸度硫酸作反萃剂, 对负载有机相反萃取, 进行钒、铁分离。结果表明: 浸出液经石灰乳中和, 硫代硫酸钠还原, 控制溶液pH=2.5, 溶液电位为-200 mV, 当A/O=2, 经6级逆流萃取, 钒的萃取率达99%以上, 而铁萃取率仅为11%; 反萃剂酸度控制在1.0~1.25 mol/L, O/A=18, 经5级逆流反萃取, 钒的反萃取率可达99%以上, 铁的反萃取率仅为9%。反萃取水相中V2O5浓度为75.3 g/L, Fe浓度为1.2 g/L, 反萃水相中钒铁质量比为62.8, 钒铁分离效果较好, 满足后续提钒要求。  相似文献   

8.
对新型萃取剂G8315从湿法冶金系统的含锗沉矾后液中萃取回收锗的性能进行了研究。结果表明, 有机相中G8315的浓度、相比、萃取时间、沉矾液中硫酸浓度等因素对锗的萃取都有显著的影响。常温下萃取工艺条件为: G8315的浓度(体积分数)为10%, 相比O∶A=1∶2, 料液的硫酸浓度为45 g/L, 萃取时间为3 min。在此条件下进行单级萃取, 锗的萃取率为83.46%;反萃的最佳条件为: 氢氧化钠的浓度为6 mol/L, 相比为O∶A=2∶1, 反萃时间为2 min, 在此条件下进行两级错流反萃, 锗的反萃率高达96.5%。  相似文献   

9.
低酸浸出-溶剂萃取法从含铟渣中回收铟   总被引:11,自引:1,他引:11  
用正交实验法研究从复杂含铟冶炼渣中回收铟的低酸浸出-溶剂萃取工艺,探讨铟锑分离的条件。含铟锑渣用2mol/L H2SO4和30-40g/L NaCl两段逆流浸取,浸出温度100℃,铟的浸出率为80%。用P204-磺化煤油体系,相比O/A为1:3,水相保持浸出液酸度,3级逆流萃取,铟的萃取率达98%以上,用30g/L草酸溶液2次洗脱负载有机相中的锑,脱除率99%。用2mol/L HCl溶液3级逆流反萃铟,铟的反萃率在99%以上。  相似文献   

10.
研究了酰胺类萃取剂N503(N,N′?二(1?甲基庚基)乙酰胺)从盐酸溶液中萃取铟和铁的行为,考察了盐酸浓度、萃取剂浓度和氯离子浓度对铟、铁萃取率的影响。结果表明:盐酸浓度、萃取剂浓度对In(III)和Fe(III)的萃取率影响较显著,在研究的盐酸浓度范围内,溶液中铟、铁的萃取顺序为Fe(III)>In(III)>Fe(II)。当盐酸浓度为3 mol?L-1,N503浓度为20 %时,Fe(III)的萃取率接近100 %,In(III)的萃取率约为70 %,Fe(II)的萃取率小于1 %。因此Fe(III)与In(III)难以选择性萃取分离,Fe(II)与In(III)可以实现选择性萃取分离。且Fe(III)、In(III)萃合物反萃性能接近,均能被稀盐酸反萃,难以实现选择性反萃分离。因而,获得从盐酸溶液中萃取分离铟铁的工艺为:先采用铁粉将Fe(III)还原为Fe(II),再采用N503选择性萃取,0.1 mol?L-1盐酸溶液反萃In(III),铟铁的分离系数可以达到1400,为铟、铁的分离提供数据基础和理论指导。  相似文献   

11.
在密闭鼓风炉熔炼过程中锗铟的富集及综合回收   总被引:4,自引:0,他引:4  
在密闭鼓风炉炼铅锌过程中 ,锗和铟富集于真空炉渣中 ,铟富集于B塔底铅和粗铅中 .先采用氯化蒸馏从真空炉渣中回收锗 ,再从其残液中用TBP和P2 0 4 萃取回收铟 ,锗、铟的回收率分别高于 78%,83%;采用碱熔造渣捕集铟、水洗除碱、混酸浸出铟的工艺从B塔底铅中回收铟 ,回收率85 %;采用硫酸熟化浸出、铁屑置换除杂、P2 0 4 萃取富集的工艺从反射炉烟尘中回收铟 ,铟的回收率约 85 %.  相似文献   

12.
湿法炼锌渣中铟铋锡的分离回收   总被引:2,自引:2,他引:0  
黄霞光 《有色金属》2001,53(4):51-53
采用浸出-溶剂萃取方法处理湿法炼锌渣,分离回收其中的In, Bi和Sn.用4.5mol/ L H2SO4浸出2h,浸出液用TBP萃取Sn,用P204萃取In,浸出渣再用3mol/L HCl 溶液浸出 Bi. 用钢板从溶液中置换Bi,获得海绵铋,Bi>97%.用铝板从反萃液中置换Sn和In得到海绵锡和海绵铟,海绵锡含Sn99%,三种金属的回收率都在90%以上.  相似文献   

13.
采用P204-仲辛醇皂化萃取体系从金精矿氰化尾渣酸浸液中萃取分离铁, 初步研究其萃取机理, 并考察了萃取体系、P204浓度和料液初始pH值、含铁浓度及加入介质NaCl对Fe(Ⅲ)萃取的影响以及相比(O/A)、H2SO4浓度对Fe(Ⅲ)反萃的影响。实验结果表明:P204和仲辛醇对酸浸液中的Fe(Ⅲ)具有一定协同萃取效应, 仲辛醇作为萃取体系中的相转移试剂, 尤其能改善铁的反萃效率。同时, 采用氨水皂化后的萃取体系铁的提取率显著提高。P204、仲辛醇以及260#溶剂油以1∶1∶2的体积比混合作为萃取体系, 在相比为2的条件下, 调整含铁10.18 g/L的原酸浸液的pH值接近2.0, 经过1级萃取, 萃余液中含铁低于0.25 g/L; 以25%(体积分数)的H2SO4反萃, 有机相中的铁基本被反萃完全。通过萃取和反萃, 铁离子溶液中杂质含量大大减少, 尤其是砷的含量。  相似文献   

14.
萃淋树脂分步洗脱法分离回收铟和镓   总被引:4,自引:0,他引:4  
以静态和动态法研究硫酸介质中镓(III)、铟(III)和锌(II)3种离子在CL-P204萃淋树脂上的吸萃和洗脱过程.在pH2.5条件下用树脂共吸萃3种离子,然后分别以0.1,0.5和3.0mol/L盐酸分步洗脱锌(II)、镓(III)、铟(III).CL-P204萃淋树脂对铟(III)和镓(III)的静态吸附容量分别是48.5,43.2mg/g;动态吸附容量分别是47.3,42.3mg/g.可采用选择性吸附或分步洗脱方式从混和液中分离铟(III).  相似文献   

15.
针对该残酸的性质,采用还原净化,TBP P204联合萃取,反萃取液除杂、置换、熔炼,获得稀散金属In,In≥98%,总回收年大于93%,同时获得稀贵金属Ag,Ag≥99%,Ag的回收率90%以上。  相似文献   

16.
为了综合回收锌浸渣中的有价金属,进行了弱酸渣酸浸减量化研究,减量后的渣进回转窑处理,酸浸混合液采用锌精矿还原处理-铁粉置换沉铜-锌焙砂预中和-氧化锌粉中和沉铟工艺来分离回收有价金属.采用酸浸工艺和回转窑工艺联合处理锌浸渣,可减少入窑渣量,降低能耗.结果表明,锌浸渣经酸浸可减量50%以上,锌粉中和沉铟工艺可实现锌回收率大...  相似文献   

17.
我国氧化锌矿储量丰富,但贫矿多、富矿少、难于选冶。由于低品位氧化锌矿品位低、杂质含量高、处理工艺复杂等,未能得到有效利用。采用在浆萃取工艺对低品位氧化锌矿进行研究,试验结果表明:采用在浆萃取工艺,矿浆浓度33%,初始硫酸浓度20 g/L,加入硫酸的同时加入萃取剂(30%P204+70%煤油)进行边浸边萃,试验时间为60 min;负载有机相用200 g/L硫酸进行反萃,相比O/A=4,时间15 min。锌浸出率超过97%,萃取率大于99%;硫酸溶液反萃可获得较高反萃率。  相似文献   

18.
针对含有铅、锌、铜、铁等元素的含锗金属冶炼渣提出了“硫酸氧化浸出-预中和-丹宁沉锗”的流程分离富集其中的元素锗,其中考察了硫酸氧化浸出的三种不同处理方法:氧压浸出、过硫酸钠氧化浸出、双氧水氧化浸出,得出了最佳条件,并通过丹宁沉锗后,可使沉锗渣中锗的品位提高至9%以上。  相似文献   

19.
采用新型协同萃取剂P204/4PC从含少量镍钴钙的硫酸镁溶液中选择性萃取镍和钴,考察了萃取剂浓度、平衡pH值等因素对萃取分离效果的影响,绘制了萃取、反萃取等温线,并进行了串级模拟萃取?反萃取全流程实验.研究结果表明:P204/4PC协同萃取剂能从硫酸镁溶液中选择性萃取镍钴,实现镍钴与钙镁的高效分离以及镍钴的高倍富集回收...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号