首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用静电纺丝法,分别选取不同的有机溶剂PVP,PMMA,制备了SnO2的有机物纳米纤维。在600℃温度下退火后,得到不同形貌的SnO2纳米材料(SnO2纳米纤维和SnO2纳米颗粒)。分别通过XRD,SEM,TEM,BET等表征方法对材料的微结构进行了表征,并分别制备了基于SnO2纳米纤维和SnO2纳米颗粒的气敏元件,测试了这些元件对(0.5~50)×10-6的甲醛气体的敏感性能。测试结果表明,在(0.5~50)×10-6甲醛浓度范围内,SnO2纳米颗粒气敏元件比SnO2纳米纤维气敏元件表现出更低的工作温度、更高的响应灵敏度和略长的响应及恢复时间。两种元件都对甲醛表现出良好的选择性。最后,分析了SnO2纳米材料对甲醛的吸附机理。  相似文献   

2.
为了提高SnO2的气敏性能,以PVP为有机溶剂,采用静电纺丝法制备了多级结构的SnO2纳米纤维,利用XRD,SEM和TEM等技术对材料的结构、形貌进行了表征,并制备了SnO2旁热式气敏元件.采用静态气体测试系统对SnO2元件进行了气敏测试.在工作温度300℃时,对0.5~50 ppm甲醛进行了气敏测试.测试结果表明:SnO2气敏元件对甲醛气体具有优异的响应灵敏度,快速的响应及响应恢复特性、较好的选择性.采用静电纺丝制备的多级结构SnO2纳米纤维对甲醛表现出良好的气敏特性.  相似文献   

3.
林果  王红  邹彦昭  姜欢  胡宇  郝率君  刘小华 《化工新型材料》2019,47(12):100-103,108
采用水热法成功制备了Fe掺杂NiO纳米花状微球,研究了Fe掺杂量对微球结构、形貌和气敏性能的影响。气敏实验结果表明:Fe掺杂NiO纳米微球基气敏元件对丙酮的气敏性能较纯相NiO显著提高;当Fe掺杂量为0.03g时,气敏器件在工作温度为280℃,丙酮质量浓度为3.7×10~(-4) mg/L条件下,气体灵敏度为41.8,是相同条件下未掺杂NiO基气敏元件的12倍,该气敏元件在检测低浓度丙酮气体时也表现出优异的性能。  相似文献   

4.
利用水热合成技术,成功制备具有孔道的纯ZnO微米花和Al_2O_3掺杂的ZnO(Al_2O_3-ZnO)微米花。通过X射线衍射(XRD)、扫描电镜(SEM)、电子能谱(EDS)对样品的形貌和结构进行表征。利用所得的纯ZnO和Al_2O_3-ZnO样品制备气敏元件,并对其气敏特性进行研究。结果表明:在工作温度为260℃时,基于Al_2O_3-ZnO的气敏元件对100×10~(-6)的丙酮气体的灵敏度约为82.8,约为同条件下基于纯ZnO的气敏元件对丙酮气体灵敏度(18.0)的4.6倍,其响应时间和恢复时间分别为3s和8s,是同条件下干扰气体中灵敏度最高的乙醇气体的灵敏度(26.2)的3.16倍,该元件具有优异的选择性,能成功区分具有相似性质的丙酮和乙醇。此外,Al_2O_3-ZnO器件可检测到0.25×10-6的丙酮气体,其灵敏度约为3.1。  相似文献   

5.
以ZnO、S如纳米颗粒及ZnO/SnO2复合纳米材料分别作为气敏基料制成旁热式气敏元件,运用扫描电镜观察产物的形貌,用静态配气法对浓度为100ppm的甲烷气体进行气敏性能的测试。结果表明,这几类元件的最佳工作温度及灵敏度差异较大,当工作温度为350℃时SnO2纳米颗粒的气敏性能最佳。此温度下,SnO2响应时间和恢复时间也比纯ZnO纳米颗粒分别缩短了2S和3S。  相似文献   

6.
采用一步水热法制备出了掺杂铟和未掺杂的球花状SnO2纳米结构。通过扫描电子显微镜(SEM)、X射线粉末衍射(XRD)等手段对所得样品的形貌及晶体结构进行了表征,结果表明制得的SnO2纳米结构由厚度约30nm的纳米片组成,晶型为四方金红石型。以掺杂铟和未掺杂的SnO2样品制作了旁热式气敏元件,用于测试样品对乙醇气体的气敏性能。测试结果显示铟的掺入提高了SnO2样品的灵敏度,同时降低了气敏元件的最佳工作温度。最后,提出了铟掺杂提升SnO2纳米材料的气敏性能的可能机制。  相似文献   

7.
采用柠檬酸盐法制备SnO2(0.9)-Fe2O3(0.1)粉体材料.XRD结构分析表明,在750℃焙烧温度下制得的粉体材料中铁原子大部分进入SnO2晶格中,以SnO2(0.9)-Fe2O3(0.1)固溶体状态存在.采用750℃焙烧温度下制得的SnO2(0.9)-Fe2O3(0.1)固溶体为基体材料,制作旁热式气敏元件并考察其气敏特性.结果表明此类元件对乙醇、一氧化碳等还原性气体具有较高的灵敏度.同时元件长期稳定性良好,100天内元件阻值及灵敏度变化很小.  相似文献   

8.
TiO2基有机气体敏感元件的制备及性能研究   总被引:1,自引:0,他引:1  
王欢  肖定全  胡国斌  余萍 《功能材料》2005,36(6):862-864,868
将多种金属氧化物掺入TiO2中,通过传统的陶瓷气敏传感器制备技术,制作了旁热式烧结型传感器,研究了这些传感器对有机挥发性气体(VOCs)的敏感特性。在不同浓度的甲醛、苯、丙酮和乙醇气氛中,测试了传感器的气敏特性。测试结果表明,添加In2O3、Cr2O3或SnO2能提高传感器对苯的灵敏度,添加In2O3或Cr2O3能提高传感器对丙酮的灵敏度,添加Cr2O3或SnO2的元件对甲醛气体较灵敏。此外,本文还研究了传感器陶瓷的烧结温度对传感器气敏特性的影响。  相似文献   

9.
Cd2SnO4水热制备及其气敏性能研究   总被引:1,自引:0,他引:1  
以SnCl4.5H2O、CdCl2·1/2H2O和NaOH为原料,采用水热法制备了Cd2SnO4粒子。通过XRD和SEM对其物相和形貌进行了分析,并将其制成气敏元件,进行气敏性能测试。结果表明制得的Cd2SnO4粒子为多面体,对乙醇、丙酮和三乙胺有较高的灵敏度和好的响应-恢复特性。  相似文献   

10.
肖双  李超  桂阳海  崔瑞立 《材料导报》2012,26(20):95-98
为改善WO3基敏感材料的气敏性能,先采用液相还原法制备得到WO3粉体,再通过微波辅助液相法制备了SnO2掺杂量为0.5%、1%、3%、5%、10%(质量分数,下同)的SnO2-WO3复合材料。采用XRD和SEM对材料的物相、形貌进行了表征,并研究了掺杂SnO2对WO3气敏性能的影响。结果表明,掺杂3%的SnO2可显著提高WO3对H2S的灵敏度和选择性,在工作温度为160℃时,元件对体积浓度为10×10-6 H2S的灵敏度达65,对体积浓度为50×10-6 H2S的灵敏度高达169,且灵敏度与气体浓度呈现良好的线性关系。此外,纯WO3和SnO2(3%)-WO3材料在相对湿度RH=22%~64%时有良好的抗湿性。  相似文献   

11.
To explore the possibility of bandgap engineering in Ti-oxide based insulators, we investigated the effect of added cations of another kind (Hf, Ta, Sr) on the optical absorption and photoconductivity of thin titanate films. A bandgap of 3.1-3.4 eV, typical for pure polycrystalline TiO2, was found in crystallized SrxTiyOz of different composition as well as in amorphous Ta2Ti3Oz. By contrast, the gap width of Hf titanates increases starting from 3.5 eV for 30% Hf/(Hf + Ti) to 4.2 eV for 84% Hf/(Hf + Ti). We suggest that this gap widening is associated with reduced interaction between electron states of neighboring Ti cations as influenced by a wide-gap (Eg = 5.6 eV) HfO2 sub-network.  相似文献   

12.
The partial substitution of Ga at the Cu(1) (chain) sites of the YBa2Cu3O7 structure allows synthesis at ambient pressure of Ba-free analogs, e.g., YSr2Cu2.7Ga0.3O7– . Materials with this composition have been found to be nonsuperconducting, but superconductivity has been induced by one or more of the following methods: Ca substitutions at the Y site; Ba substitutions at the Sr site; annealing in high-pressure oxygen. The influence of these chemical manipulations onT c has been monitored and all methods have been found to enhanceT c . The electronic effects of Ba substitutions have been deduced indirectly using powder neutron diffraction, and such substitutions appear to result in a redistribution of hole density into the Cu(1) sites from the superconducting CuO2 planes.  相似文献   

13.
Abstract

R2Fe3Si5 (R= Sc, Y, Lu) contains nonmagnetic iron and has a relatively high superconducting transition temperature Tc among iron-containing superconductors. An anomalous temperature dependence of specific heat C(T) has been reported for polycrystalline samples down to 1 K. We have grown R2Fe3Si5 single crystals, confirmed the anomalous C(T) dependence, and found a second drop in specific heat below 1 K. In Lu2Fe3Si5, we can reproduce C(T) below Tc, assuming two distinct energy gaps 2Δ 1/kBTc = 4.4 and 2Δ 2/kBTc = 1.1, with nearly equal weights, indicating that Lu2Fe3Si5 is a two-gap superconductor similar to MgB2. Hall coefficient measurements and band structure calculation also support the multiband contributions to the normal-state properties. The specific heat in the Sc2Fe3Si5 single crystals also shows the two-gap feature. R5Ir4Si10 (R = Sc, rare earth) is also a superconductor where competition between superconductivity and the charge-density wave is known for rare earths but not for Sc. We have performed detailed specific heat measurements on Sc5Ir4Si10 single crystals and found that C(T) deviates slightly from the behavior expected for weak-coupling superconductors. C(T) for these superconductors can also be reproduced well by assuming two superconducting gaps.  相似文献   

14.
R2Fe3Si5 (R= Sc, Y, Lu) contains nonmagnetic iron and has a relatively high superconducting transition temperature Tc among iron-containing superconductors. An anomalous temperature dependence of specific heat C(T) has been reported for polycrystalline samples down to 1 K. We have grown R2Fe3Si5 single crystals, confirmed the anomalous C(T) dependence, and found a second drop in specific heat below 1 K. In Lu2Fe3Si5, we can reproduce C(T) below Tc, assuming two distinct energy gaps 2Δ 1/kBTc = 4.4 and 2Δ 2/kBTc = 1.1, with nearly equal weights, indicating that Lu2Fe3Si5 is a two-gap superconductor similar to MgB2. Hall coefficient measurements and band structure calculation also support the multiband contributions to the normal-state properties. The specific heat in the Sc2Fe3Si5 single crystals also shows the two-gap feature. R5Ir4Si10 (R = Sc, rare earth) is also a superconductor where competition between superconductivity and the charge-density wave is known for rare earths but not for Sc. We have performed detailed specific heat measurements on Sc5Ir4Si10 single crystals and found that C(T) deviates slightly from the behavior expected for weak-coupling superconductors. C(T) for these superconductors can also be reproduced well by assuming two superconducting gaps.  相似文献   

15.
Measurements of the entropy change are reported for the high-temperature metal-insulator (MI) transitions in the (V1–xCrx)2O3 and (V1–xAlx)2O3 systems. It is emphasized that the entropy of the I phase exceeds that of the M phase. Evidence is presented to show that the M and I phases coexist over a narrow temperature range. The transformation is attended by enormous hysteresis effects; these indicate that the lattice plays an important role in the transition. The probable role of Cr3+ and Al3+ as a dopant in the V2O3 lattice is briefly discussed. A phase diagram for the dilute V2O3-Al2O3 alloy system is presented.  相似文献   

16.
In2Ge2O7 and In2Si2O7 are commonly used as scintillation materials. More studies on In2X2O7 (X═C, Si, Ge, or Sn) are important to explore the possibility of using these materials for optoelectronic devices. This work presents results dealing with structural properties, electronic structure, chemical bonding, carrier effective masses, and optical spectra of polymorphs of In2X2O7 obtained from first-principles calculations. The monoclinic phase of In2Ge2O7, cubic and monoclinic phases of In2Si2O7, as well as cubic phase of In2Sn2O7 are known in scientific literature. From the total energy calculations at high pressure/strain we have found that the monoclinic phase of In2Si2O7, In2Ge2O7, and In2Sn2O7 can be transformed into the cubic phase. The cubic phase of In2Ge2O7 and In2Sn2O7 is found to be more stable than the monoclinic phase. However, the monoclinic phase of In2C2O7 and In2Si2O7 is more stable than the cubic phase. The phase stability study suggests that In2C2O7 is not stable, and that it might dissociate into corresponding binary oxides. Effective masses of electrons and holes have been estimated. Analysis of optical properties shows that in Si solar cells In2Si2O7 and In2Sn2O7 can be used as antireflection coating layer.  相似文献   

17.
High resolution O K-edge and Cu L3-edge X-ray absorption near-edge-structure (XANES) spectra of the high-Tc cuprates of (Tl0.5Pb0.5)Sr2(Ca1–xYx)Cu2O7 (Tl-1212) and (Hg0.5Pb0.5)Sr2(Ca1–xYx)Cu2O7 (Hg-1212) in powder form were measured using a bulk sensitive total-fluorescence-yield technique. Near the O 1s edge, the pre-edge peak with maxima at 528.3 eV is ascribed to the transitions to O 2p holes located in the CuO2 planes. The intensity of this pre-edge peak increases with increasing doping level of Ca2+ into the Y3+ sites in Tl-1212 and Hg-1212. In the Cu L-edge absorption spectra, high-energy shoulders at around 933 eV are attributed to the transitions to the Cu(2p3/2)–13d10L states in the CuO2 layers, where L denotes the O 2p ligand hole. The behavior of these shoulders in Tl-1212 and Hg-1212 correlates with that of the pre-edge peak at 528.3 eV in the O K-edge absorption spectra. The results can lead us to understand the hole distribution in high-Tc cuprates which will give a direction to find new high-Tc materials.  相似文献   

18.
The nitriding thermochemical treatment (NTT) is commonly used for steels. In this paper, the experimental conditions required for NTT, and the influence of such treatments on the structure and hysteresis loops of Co74Fe8B12Si6 and Co74Fe4Mn4B12Si6 ribbons are reported. The results have been compared with those obtained with ribbons treated according to conventional thermal treatment (CTT) as well.  相似文献   

19.
The superconducting properties of Y1–y Ca y Sr2Cu2GaO7– have been examined and related to the Ca content,y, and the use of annealing treatments at 350 bar oxygen. Superconductivity withT c up to 41 K was found only for high-pressure-annealed samples, and the structural effects of Ca substitution and high-pressure treatment were examined using powder neutron diffraction. Small but significant changes in Cu-Cu and Cu-O distances were found and suggest that the Cu ions are more highly charged in superconducting samples. Partial substitution of Ba for Sr was found to be possible (up to 20%) to give samples which, after annealing in high-pressure oxygen, were superconducting at temperatures up to 68 K.  相似文献   

20.
A cadmium analogue of the mercury system with nominal composition CdBa2(Ca1–xYx)Cu2Oy has been synthesized. Thex=0 samples contain about 12 vol.% of the 1212 phase but are not superconducting. Thex=0.3 samples are superconducting atT on = 103 K. The EDX analysis of 18 microcrystals shows a broad cationic distribution of the different components. The observed broad superconducting transition is attributed to the variousT c of the different microcrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号