首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding symmetries and arrangements in existing content is the first step towards providing higher level content aware editing capabilities. Such capabilities may include edits that both preserve existing structure as well as synthesize entirely new structures based on the extracted pattern rules. In this paper we show how to detect regular symmetries and arrangement along curved segments in vector art. We determine individual elements in the art by using the transformation similarity for sequences of sample points on the input curves. Then we detect arrangements of those elements along an arbitrary curved path. We can un-warp the arrangement path to detect symmetries near the path. We introduce novel applications inform of editing elements that are arranged along a curved path. This includes their sliding along the path, changing of their spacing, or their scale. We also allow the user to brush the elements that the system recognized along new paths.  相似文献   

2.
This paper presents a new interpolatory Loop scheme and an unified and mixed interpolatory and approximation subdivision scheme for triangular meshes. The former which is C1 continuous as same as the modified Butterfly scheme has better effect in some complex models. The latter can be used to solve the “popping effect” problem when switching between meshes at different levels of resolution. The scheme generates surfaces coincident with the Loop subdivision scheme in the limit condition having the coefficient k equal 0. When k equal 1, it will be changed into a new interpolatory subdivision scheme. Eigen‐structure analysis demonstrates that subdivision surfaces generated using the new scheme are C1 continuous. All these are achieved only by changing the value of a parameter k. The method is a completely simple one without constructing and solving equations. It can achieve local interpolation and solve the “popping effect” problem which are the method's advantages over the modified Butterfly scheme.  相似文献   

3.
Visualization of vessel movements   总被引:1,自引:0,他引:1  
We propose a geographical visualization to support operators of coastal surveillance systems and decision making analysts to get insights in vessel movements. For a possibly unknown area, they want to know where significant maritime areas, like highways and anchoring zones, are located. We show these features as an overlay on a map. As source data we use AIS data: Many vessels are currently equipped with advanced GPS devices that frequently sample the state of the vessels and broadcast them. Our visualization is based on density fields that are derived from convolution of the dynamic vessel positions with a kernel. The density fields are shown as illuminated height maps. Combination of two fields, with a large and small kernel provides overview and detail. A large kernel provides an overview of area usage revealing vessel highways. Details of speed variations of individual vessels are shown with a small kernel, highlighting anchoring zones where multiple vessels stop. Besides for maritime applications we expect that this approach is useful for the visualization of moving object data in general.  相似文献   

4.
    
Recent increases in terrorist activity around the world have made analyzing and understanding such activities more critical than ever. With the help of organizations such as the National Center for the Study of Terrorism and Responses to Terrorism (START), we now have detailed historical information on each terrorist event around the world since 1970. However, due to the size and complexity of the data, identifying terrorists' patterns and trends has been difficult. To better enable investigators in understanding terrorist activities, we propose a visual analytical system that focuses on depicting one of the most fundamental concepts in investigative analysis, the five W's (who, what, where, when, and why). Views in our system are highly correlated, and each represents one of the W's. With this approach, an investigator can interactively explore terrorist activities efficiently and discover reasons of attacks (why) by identifying patterns temporally (when), geo‐spatially (where), between multiple terrorist groups (who), and across different methods or modes of attacks (what). By coupling a global perspective with the details gleaned from asking these five questions, the system allows analysts to think both tactically and strategically.  相似文献   

5.
Traversing voxels along a three dimensional (3D) line is one of the most fundamental algorithms for voxel‐based applications. This paper presents a new 6‐connectivity integer algorithm for this task. The proposed algorithm accepts voxels having different sizes in x, y and z directions. To explain the idea of the proposed approach, a 2D algorithm is firstly considered and then extended in 3D. This algorithm is a multi‐step as up to three voxels may be added in one iteration. It accepts both integer and floating‐point input. The new algorithm was compared to other popular voxel traversing algorithms. Counting the number of arithmetic operations showed that the proposed algorithm requires the least amount of operations per traversed voxel. A comparison of spent CPU time using either integer or floating‐point arithmetic confirms that the proposed algorithm is the most efficient. This algorithm is simple, and in compact form which also makes it attractive for hardware implementation.  相似文献   

6.
    
In this paper, we present an automated system for generating context‐preserving route maps that depict navigation routes as a path between nodes and edges inside a topographic network. Our application identifies relevant context information to support navigation and orientation, and generates customizable route maps according to design principles that communicate all relevant context information clearly visible on one single page. Interactive scaling allows seamless transition between the original undistorted map and our new map design, and supports user‐specified scaling of regions of interest to create personalized driving directions according to the drivers needs.  相似文献   

7.
We present an approach for extracting extremal feature lines of scalar indicators on surface meshes, based on discrete Morse Theory. By computing initial Morse‐Smale complexes of the scalar indicators of the mesh, we obtain a candidate set of extremal feature lines of the surface. A hierarchy of Morse‐Smale complexes is computed by prioritizing feature lines according to a novel criterion and applying a cancellation procedure that allows us to select the most significant lines. Given the scalar indicators on the vertices of the mesh, the presented feature line extraction scheme is interpolation free and needs no derivative estimates. The technique is insensitive to noise and depends only on one parameter: the feature significance. We use the technique to extract surface features yielding impressive, non photorealistic images.  相似文献   

8.
Variational 3D Shape Segmentation for Bounding Volume Computation   总被引:1,自引:0,他引:1  
We propose a variational approach to computing an optimal segmentation of a 3D shape for computing a union of tight bounding volumes. Based on an affine invariant measure of e-tightness, the resemblance to ellipsoid, a novel functional is formulated that governs an optimization process to obtain a partition with multiple components. Refinement of segmentation is driven by application-specific error measures, so that the final bounding volume meets pre-specified user requirement. We present examples to demonstrate the effectiveness of our method and show that it works well for computing ellipsoidal bounding volumes as well as oriented bounding boxes.  相似文献   

9.
This paper introduces a framebuffer level of detail algorithm for controlling the pixel workload in an interactive rendering application. Our basic strategy is to evaluate the shading in a low resolution buffer and, in a second rendering pass, resample this buffer at the desired screen resolution. The size of the lower resolution buffer provides a trade‐off between rendering time and the level of detail in the final shading. In order to reduce approximation error we use a feature‐preserving reconstruction technique that more faithfully approximates the shading near depth and normal discontinuities. We also demonstrate how intermediate components of the shading can be selectively resized to provide finer‐grained control over resource allocation. Finally, we introduce a simple control mechanism that continuously adjusts the amount of resizing necessary to maintain a target framerate. These techniques do not require any preprocessing, are straightforward to implement on modern GPUs, and are shown to provide significant performance gains for several pixel‐bound scenes.  相似文献   

10.
This paper describes a fast rendering algorithm for verification of spectacle lens design. Our method simulates refraction corrections of astigmatism as well as myopia or presbyopia. Refraction and defocus are the main issues in the simulation. For refraction, our proposed method uses per-vertex basis ray tracing which warps the environment map and produces a real-time refracted image which is subjectively as good as ray tracing. Conventional defocus simulation was previously done by distribution ray tracing and a real-time solution was impossible. We introduce the concept of a blur field, which we use to displace every vertex according to its position. The blurring information is precomputed as a set of field values distributed to voxels which are formed by evenly subdividing the perspective projected space. The field values can be determined by tracing a wavefront from each voxel through the lens and the eye, and by evaluating the spread of light at the retina considering the best human accommodation effort. The blur field is stored as texture data and referred to by the vertex shader that displaces each vertex. With an interactive frame rate, blending the multiple rendering results produces a blurred image comparable to distribution ray tracing output.  相似文献   

11.
    
Fiber tracking is a standard tool to estimate the course of major white matter tracts from diffusion tensor magnetic resonance imaging (DT‐MRI) data. In this work, we aim at supporting the visual analysis of classical streamlines from fiber tracking by integrating context from anatomical data, acquired by a T1‐weighted MRI measurement. To this end, we suggest a novel visualization metaphor, which is based on data‐driven deformation of geometry and has been inspired by a technique for anatomical fiber preparation known as Klingler dissection. We demonstrate that our method conveys the relation between streamlines and surrounding anatomical features more effectively than standard techniques like slice images and direct volume rendering. The method works automatically, but its GPU‐based implementation allows for additional, intuitive interaction.  相似文献   

12.
We present a real‐time method for rendering a depth‐of‐field effect based on the per‐pixel layered splatting where source pixels are scattered on one of the three layers of a destination pixel. In addition, the missing information behind foreground objects is filled with an additional image of the areas occluded by nearer objects. The method creates high‐quality depth‐of‐field results even in the presence of partial occlusion, without major artifacts often present in the previous real‐time methods. The method can also be applied to simulating defocused highlights. The entire framework is accelerated by GPU, enabling real‐time post‐processing for both off‐line and interactive applications.  相似文献   

13.
  总被引:1,自引:0,他引:1  
In this paper, we introduce a new representation – radiance transfer fields (RTF) – for rendering interreflections in dynamic scenes under low frequency illumination. The RTF describes the radiance transferred by an individual object to its surrounding space as a function of the incident radiance. An important property of RTF is its independence of the scene configuration, enabling interreflection computation in dynamic scenes. Secondly, RTFs naturally fit in with the rendering framework of precomputed shadow fields, incurring negligible cost to add interreflection effects. In addition, RTFs can be used to compute interreflections for both diffuse and glossy objects. We also show that RTF data can be highly compressed by clustered principal component analysis (CPCA), which not only reduces the memory cost but also accelerates rendering. Finally, we present some experimental results demonstrating our techniques.  相似文献   

14.
Recent soft shadow mapping techniques based on back-projection can render high quality soft shadows in real time. However, real time high quality rendering of large penumbrae is still challenging, especially when multilayer shadow maps are used to reduce single light sample silhouette artifact. In this paper, we present an efficient algorithm to attack this problem. We first present a GPU-friendly packet-based approach rendering a packet of neighboring pixels together to amortize the cost of computing visibility factors. Then, we propose a hierarchical technique to quickly locate the contour edges, further reducing the computation cost. At last, we suggest a multi-view shadow map approach to reduce the single light sample artifact. We also demonstrate its higher image quality and higher efficiency compared to the existing depth peeling approaches.  相似文献   

15.
  总被引:3,自引:0,他引:3  
Illustrative volume visualization frequently employs non-photorealistic rendering techniques to enhance important features or to suppress unwanted details. However, it is difficult to integrate multiple non-photorealistic rendering approaches into a single framework due to great differences in the individual methods and their parameters. In this paper, we present the concept of style transfer functions. Our approach enables flexible data-driven illumination which goes beyond using the transfer function to just assign colors and opacities. An image-based lighting model uses sphere maps to represent non-photorealistic rendering styles. Style transfer functions allow us to combine a multitude of different shading styles in a single rendering. We extend this concept with a technique for curvature-controlled style contours and an illustrative transparency model. Our implementation of the presented methods allows interactive generation of high-quality volumetric illustrations.  相似文献   

16.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

17.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

18.
Illustrative parallel coordinates (IPC) is a suite of artistic rendering techniques for augmenting and improving parallel coordinate (PC) visualizations. IPC techniques can be used to convey a large amount of information about a multidimensional dataset in a small area of the screen through the following approaches: (a) edge‐bundling through splines; (b) visualization of “branched ” clusters to reveal the distribution of the data; (c) opacity‐based hints to show cluster density; (d) opacity and shading effects to illustrate local line density on the parallel axes; and (e) silhouettes, shadows and halos to help the eye distinguish between overlapping clusters. Thus, the primary goal of this work is to convey as much information as possible in a manner that is aesthetically pleasing and easy to understand for non‐experts.  相似文献   

19.
In this paper, we present a rapid prototyping framework for GPU‐based volume rendering. Therefore, we propose a dynamic shader pipeline based on the SuperShader concept and illustrate the design decisions. Also, important requirements for the development of our system are presented. In our approach, we break down the rendering shader into areas containing code for different computations, which are defined as freely combinable, modularized shader blocks. Hence, high‐level changes of the rendering configuration result in the implicit modification of the underlying shader pipeline. Furthermore, the prototyping system allows inserting custom shader code between shader blocks of the pipeline at run‐time. A suitable user interface is available within the prototyping environment to allow intuitive modification of the shader pipeline. Thus, appropriate solutions for visualization problems can be interactively developed. We demonstrate the usage and the usefulness of our framework with implementations of dynamic rendering effects for medical applications.  相似文献   

20.
Most 3D vector field visualization techniques suffer from the problem of visual clutter, and it remains a challenging task to effectively convey both directional and structural information of 3D vector fields. In this paper, we present a novel visualization framework that combines the advantages of clustering methods and illustrative rendering techniques to generate a concise and informative depiction of complex flow structures. Given a 3D vector field, we first generate a number of streamlines covering the important regions based on an entropy measurement. Then we decompose the streamlines into different groups based on a categorization of vector information, wherein the streamline pattern in each group is ensured to be coherent or nearly coherent. For each group, we select a set of representative streamlines and render them in an illustrative fashion to enhance depth cues and succinctly show local flow characteristics. The results demonstrate that our approach can generate a visualization that is relatively free of visual clutter while facilitating perception of salient information of complex vector fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号