首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnesium(Mg)-based alloys have already been widely studied as the hydrogen storage materials because of their high reversible hydrogen storage capacity,low cost,light weight,etc.However,the poor de/hydrogenation kinetic properties dramatically hinder the practical applications.In this work,the MgH_2-ANi_5(A=Ce,Nd,Pr,Sm,and Y) composites were prepared by a high-energy ball milling method.which can effectively refine the particle size thus improving the kinetic properties.Experimental results reveal that the MgH_2-ANi_5 composites mainly consist of Mg_2 NiH_4,MgH_2 and rare earth(RE) hydride,which will be dehydrogenated to form Mg_2 Ni,Mg and stable RE hydride reversibly.Accordingly,the asmilled MgH_2-ANi_5(A=Ce,Nd,Pr,Sm,and Y) composites with various A-elements can respectively contribute to a reversible hydrogen storage capacity of 6.16 wt%,5.7 wt%,6.21 wt%,6.38 wt%,and 6.5 wt%at a temperature of 300℃,and show much better kinetic properties in comparison to the pure MgH_2 without any additive.In-situ formed Mg_2 Ni and stable RE hydride(such as CeH_(2.73) and YH_2) might act as effective catalysts to significantly improve the hydrogen storage properties of MgH_2.The present work provides a guideline on improving the kinetic properties of the Mg-based hydrogen storage alloys.  相似文献   

2.
Thin ribbons of the metallic glass Mg65Cu25Y10 and Mg63Ni30Y7 obtained by melt spinning were saturated with atomic hydrogen during electrochemical decomposition of water. The amount of absorbed hydrogen was as high as 4 mass% for the alloy Mg65Cu25Y10Hx and 1.5 mass% for the alloy Mg63Ni30Y7Hx. As the hydrogen content increases up to 3.6 mass%, the amorphous structure of the copper-containing alloy is transformed to a nanocrystalline structure with formation of magnesium and yttrium hydrides and also the intermetallic Cu2Mg at room temperature. The appearance of crystalline compounds during saturation with hydrogen leads to a decrease in the thermal stability of the amorphous alloy and a shift of the differential scanning calorimetry curves toward lower temperatures. In the presence of nickel, the thermal stability of the amorphous alloy Mg63Ni30Y7Hx increases with hydrogen saturation. After heating up to the crystallization temperature, the compounds Mg2NiH0.3 and YH2 appear. __________ Translated from Poroshkovaya Metallurgiya, Nos. 3–4(448), pp. 105–111, March–April, 2006.  相似文献   

3.
The formation of hydrides by the reaction of high-pressure hydrogen (300 to 800 psi) with Mg-10Al and Mg-25Ni was studied at 400 and 450°C. Although the reaction kinetics for both alloys can be described by the Johnson-Mehl relationship, the morphology and nature of the reaction products were very different for the two alloys. The temperature dependence of the rates suggests that an interfacial reaction, possibly the transfer of hydrogen from the metal to the hydride, may be the rate-controlling step. One hydride, MgH2, formed internally in the Mg-10Al alloy as spherical particles of nearly constant size at any time, indicating that nucleation was rapid. The reaction involving Mg-25Ni resulted in two hydrides, MgH2 and Mg2NiH4, the former being more stable and forming first by consuming the primary magnesium phase of the eutectic structure. The hydride advanced into the alloy as a “front”, after which the eutectic plates of Mg2Ni reacted to form the ternary hydride. Finally, the larger primary plates of Mg2Ni reacted. Dehydriding of the Mg-10Al alloy hydride also followed the Johnson-Mehl relationship and was found to be complete in 90 min at 300°C, these conditions being favorable for the use of this hydride in vehicles combusting hydrogen. On the other hand, dehydriding of the hydrided Mg-25Ni alloy occurred by a twostep process in which some of the Mg2NiH4 dissociated followed by complete dissociation of this hydride and of the MgH2. Only a small fraction, 10 pct of the available hydrogen could be recovered in several hours at 300°C. The Mg-10Al alloy exhibited a much higher resistance to fragmentation during hydriding than did the Mg-25Ni alloy. An analysis of numerous factors required of hydrides for use in vehicular applications showed that Mg-10Al was much better than Mg-25Ni, although the charging time is much too long.  相似文献   

4.
The Ni-Si-Mg ternary phase diagram has been established after homogenization and slow cooling to room temperature. The chemical compositions of the alloys and their phases were obtained using fully quantitative energy dispersive X-ray spectroscopy (EDS) with standard spectrum files created from intermetallic compounds Mg2Ni and Ni2Si. The following intermetallic phases have been observed: (a) four new ternary intermetallic phases, designated as ν, ω, μ, and τ, (b) a ternary intermediate phase Mg(Ni,Si)2 based on the binary MgNi2 phase containing Si; (c) three ternary intermetallic phases, η, κ, and ζ, previously reported by the present authors;[10] and (d) Mg2SiNi3 (Fe2Tb type),[9] previously reported by Noreus et al. [8] The MgNi6Si6 phase, which was also previously reported,[7] was not observed at the corresponding composition in the present work. However, the MgNi6Si6 phase reported as being of hexagonal symmetry (Cu7Tb type),[9] with the lattice parameters a=0.4948 nm and c=0.3738 nm, possibly corresponds to the μ phase (Mg(Si0.48Ni0.52)7) discovered in the present work. The lattice structure of the newly discovered ω phase was determined with the help of the X-ray indexing program TREOR (developed by Werner et al. [13]) to be a hexagonal structure of the Ag7Te4 type ((Mg0.52Ni0.48)7Si4) with the lattice parameters a=1.3511 nm and c=0.8267 nm.  相似文献   

5.
In this work, a Mg-based composite material with in-situ formed LaH3, Mg2NiH4-LiBH4 + 20 wt% LaH3, was prepared by ball milling LiBH4 and hydrogenated LaMg2Ni and Mg2Ni powder mixture, followed by heat treatment at 573 K. The onset dehydrogenation temperature of the composite is reduced by 50 K compared with that of Mg2NiH4-LiBH4. The LaH3-doped composite shows faster kinetics, absorbing 1.43 wt% hydrogen within 100 s at 423 K, which is 6.5 times faster than Mg2NiH4-LiBH4. Moreover, the composite releases 1.24 wt% hydrogen within 500 s at 573 K, 0.69 wt% higher than Mg2NiH4-LiBH4. The activation energy of the composite is reduced by 8.2 and 80 kJ/mol compared with that of Mg2NiH4-LiBH4 and commercial MgH2, respectively. The improvement in hydrogen storage properties is attributed to the fact that LaH3 promotes the generation of nano-sized spongy Mg structure, which has good catalytic activity during the subsequent hydrogenation/dehydrogenation process.  相似文献   

6.
The thermodynamic stability of precipitated phases at the steel-Ni-Mg alloy interface during laser brazing of Ni-plated steel to AZ31B magnesium sheet using AZ92 magnesium alloy filler wire has been evaluated using FactSage thermochemical software. Assuming local chemical equilibrium at the interface, the chemical activity–temperature–composition relationships of intermetallic compounds that might form in the steel-Ni interlayer-AZ92 magnesium alloy system in the temperature range of 873 K to 1373 K (600 °C to 1100 °C) were estimated using the Equilib module of FactSage. The results provided better understanding of the phases that might form at the interface of the dissimilar metal joints during the laser brazing process. The addition of a Ni interlayer between the steel and the Mg brazing alloy was predicted to result in the formation of the AlNi, Mg2Ni, and Al3Ni2 intermetallic compounds at the interface, depending on the local maximum temperature. This was confirmed experimentally by laser brazing of Ni electro-plated steel to AZ31B-H24 magnesium alloy using AZ92 magnesium alloy filler wire. As predicted, the formation of just AlNi and Mg2Ni from a monotectic and eutectic reaction, respectively, was observed near the interface.  相似文献   

7.
Waste nickel catalyst is an important secondary source for recovery of nickel. Nickel from the waste has been leached out using aqueous SO2 solution. The initial leaching kinetics is controlled by reaction at the surface involving the adsorption of SO2 and H+ resulting in the formation of product species. A kinetic model based on the above scheme has been presented. The X-ray photoelectron spectroscopy (XPS) studies indicate that easily soluble Ni(OH)2 or NiO is initially leached out, leaving behind the other nickel species which dissolves at a slower rate.  相似文献   

8.
In the present article, we explore a cost-effective and an environmentally benign route to prepare magnesium oxide (MgO) nanoparticles through thermal decomposition of magnesium hydroxide (Mg(OH)2) nanoparticles. Mg(OH)2 nanoparticles were prepared using different solvents namely ethylenediamine (EDA) and triethanolamine (TEA) by wet chemical method, and subsequently the as-synthesized Mg(OH)2 nanoparticles were calcinated at 400°C for 2 h in air to obtain MgO nanoparticles. XRD pattern revealed that as-synthesized Mg(OH)2 nanoparticles are polycrystalline in nature with hexagonal structure, and after annealing it transforms to MgO nanoparticles with cubic structure. FTIR spectrum of as-synthesized Mg(OH)2 nanoparticles indicated the OH antisymmetric stretching vibration of the Mg(OH)2 and after annealing the sharp peak at 3686 cm−1 disappears, which confirms the complete transformation of hexagonal Mg(OH)2 to cubic MgO. SEM analysis showed the formation of interfused Mg(OH)2 nanoflakes and coral-like hierarchical MgO nanostructure made up of stacked nanoflakes. Optical band gap energy of Mg(OH)2 and MgO nanoparticles prepared using different solvent were estimated using UV–Vis DRS. Degradation of methyl orange was performed to investigate the photocatalytic activity of coral-like hierarchical MgO nanostructure. Results demonstrate that coral-like hierarchical MgO nanostructure possessing large surface area and porous morphology exhibited good photocatalytic degradation of methyl orange.  相似文献   

9.
The microstructure and phase constituent for the Mg/Al diffusion-bonded joint were studied via scanning electron microscope (SEM), microhardness test, electron probe microanalyzer (EPMA), and X-ray diffraction (XRD). The test results indicated that the new compact phase was formed near the transition region of the Mg/Al diffusion interface. There are three new phase layers in the transition region. The microhardness of the diffusion zone is higher than that of the Mg and Al substrate. The fracture morphology mainly consists of a coarse and gray fracture, and the fracture is mainly the mixed fracture of cleavage and intergranular. X-ray diffraction tests indicate that the diffusion zone of the Mg/Al diffusion-bonded joint consists of intermetallic compounds MgAl, Mg3Al2, and Mg2Al3. With the increase of temperature, the content of Mg3Al2 and Mg2Al3 phases with good stability was increased.  相似文献   

10.
LaMg8.52Ni2.23M0.15 (M=Ni, Cu, Cr) alloys were prepared by induction melting. X-ray diffraction showed that all the three alloys had a multiphase structure, consisting of La2Mg17, LaMg2Ni and Mg2Ni phases. Energy dispersive X-ray spectrometer results revealed that most of Cu and Cr distributed in Mg2Ni phase. La2Mg17 and LaMg2Ni phases decomposed into MgH2, Mg2NiH4 and LaH3 phases during the hydrogenation process. Hydriding/dehydriding measurements indicated that the reversible hydrogen storage capacities of Mg2Ni phase in LaMg8.52Ni2.23M0.15 (M=Cu, Cr) alloys increased to 1.05 wt.% and 0.97 wt.% from 0.79 wt.% of Mg2Ni phase in LaMg8.52Ni2.38 alloy at 523 K. Partial substitution of Cu and Cr for Ni decreased the onset dehydrogenation temperature of the alloy hydrides and the temperature lowered by 18.20 and 5.50 K, respectively. The improvement in the dehydrogenation property of the alloys was attributed to that Cu and Cr decreased the stability of Mg2NiH4 phase.  相似文献   

11.
Li  Guangyu  Jiang  Wenming  Guan  Feng  Zhu  Junwen  Yu  Yang  Fan  Zitian 《Metallurgical and Materials Transactions A》2022,53(10):3520-3527

The metallurgical bonding of Mg/Al bimetal by liquid–liquid compound casting was realized via co-deposition Cu–Ni alloy coating. The metallurgical layer of the Mg/Al bimetal consisted of Cu solid solution, Cu2Mg and (Al0.7Cu1.3) Mg, Mg solid solution, Al3Ni2, and Mg2Cu. Vickers hardness of the interface was between 149.9 and 209 HV, which was significantly lower than those of Al–Mg intermetallic compounds. The formation mechanism of the interface was attributed to interdiffusion among AZ91D, A356, and Cu–Ni alloy coating.

  相似文献   

12.
Nitrogen and S distribution ratios between CaO-Al2O3-MgO slags and liquid Fe were measured at 1873 K as a function of Al (or Mg, Ca) content in metal, using CaO, MgO, and A12O3 crucibles. Based on the results for the solubility product of MgO, the equilibrium constant,K Mg , for the reaction MgO =Mg +O and the first-order interaction parameter,e O Mg (e Mg O ), were estimated to be logK Mg = -7.8 ± 0.2 ande O Mg = -190 ± 60 (e Mg O = -290 ± 90), respectively. The activities of A12O3 at the slag compositions double-saturated with CaO/MgO, MgO/ MgO A12O3, and MgO Al2O3/CaO 2A12O3 components were obtained from the S distribution ratios between slag and metal, coupled with the reported values of sulfide capacities. Nitride capacities were also estimated from the N distribution ratios and the activities of A12O3.  相似文献   

13.
In Al-3 wt pct Mg/Al2O3p (or SiC p ) composites fabricated by the pressureless infiltration method, the infiltration behavior of molten metal, the mechanical properties, and the interfacial reactions were investigated. The spontaneous infiltration of the molten Al-3 wt pct Mg alloy into the powder bed occurred at a relatively low temperature (700 °C for 1 hour under a nitrogen atmosphere). Spontaneous infiltration of the molten metal is related to the formation of Mg3N2 by the reaction of Mg and nitrogen. The tensile strength and 0.2 pct offset yield strength and elongation tend to decrease with increasing infiltration temperature and time, because of an increased interfacial reaction. In Al-3Mg/Al2O3 composites, MgAl2O4 was observed at interfaces between Al2O3 and the matrix, as well as at oxide films of the Al powder surface. In addition, MgO was observed at interfaces between Al2O3 and the matrix. On the other hand, Al4C3 was formed at interfaces between SiC and the matrix in Al-3Mg/SiC composites. In addition, MgAl2O4 was observed as a reaction product at the interfaces between oxide films of SiC and the matrix, as well as at oxide films of the Al powder surface. Since the Si released as a result of the interfacial reaction is combined with Mg, age hardening can occur by the precipitation of Mg2Si via T6 treatment.  相似文献   

14.
The density and surface tension of melts of ferronickel (0–100% Ni) and oxidized nickel ore are measured by the sessile-drop method, as well as the interface tension at their boundary in the temperature range 1550–1750°C. The composition of the nickel ore is as follows: 14.8 wt % Fetot, 7.1 wt % FeO, 13.2 wt % Fe2O3, 1.4 wt % CaO, 16.2 wt % MgO, 54.5 wt % SiO2, 4.8 wt % Al2O3, 1.5 wt % NiO, and 1.2 wt % Cr2O3. In the given temperature range, the density of the alloys varies from 7700 to 6900 kg/m3; the surface tension from 1770 to 1570 mJ/m2; the interface tension from 1650 to 1450 mJ/m2, the density of the oxide melt from 2250 to 1750 kg/m3; and its surface tension from 310 to 290 mJ/m2. The results are in good agreement with literature data. Functional relationships of the density, surface tension, and interphase tension with the melt temperature and composition are derived. The dependence of the alloy density on the temperature and nickel content corresponds to a first-order equation. The temperature dependence of the surface tension and interphase tension is similar, whereas the dependence on the nickel content corresponds to a second-order equation. The density and surface tension of the oxide melt depend linearly on the temperature. The results may be used to describe the formation of metallic phase when carbon monoxide is bubbled into oxide melt.  相似文献   

15.
Hypereutectic Al?CSi alloys are used in components that require high resistance wear and corrosion, good mechanical properties, low thermal expansion and less density. The size and morphology of hard primary silicon particles present in Al?CSi alloys greatly influences the mechanical properties. Addition of Mg leads to formation of intermetallic Mg2Si phases, which contributes towards the properties of high silicon alloy as well as alters the nature and quantity of primary silicon formed. The high silicon alloy subjected to centrifugal casting leads to the formation of functionally gradient material, which provides variation in spatial and continuous distribution of primary phases in a definite direction exhibiting selective properties and functions within a component. The present study is to evaluate the effect of Mg on solidification microstructures of homogenous and functionally graded A390 aluminium alloys. The addition of Mg from 3 to 5?% in A390 alloy using Al?C20Mg master alloy has shown a transformation from primary silicon rich matrix to Mg2Si rich matrix. Centrifugal casting shows the gradient distribution of primary silicon and Mg2Si phases towards the inner periphery of the casting.  相似文献   

16.
Al 413/Mg couples were prepared by the compound casting process. Characterization of the interface by an optical microscope and scanning electron microscope (SEM) showed that a relatively uniform interface composed of three different layers is formed at the interface. The thickness of the interface depended on the melt/insert volume ratio (VR) significantly and was 80?and 470? ??m? in 1.25?and 3?VRs, respectively. The results of the energy dispersive X-ray spectroscopy (EDS), wavelength dispersive X-ray spectroscopy (WDS), and X-ray diffraction analysis showed that the interface layers are mainly composed of Al3Mg2, Al12Mg17, and Mg2Si intermetallic compounds. An accumulation of magnesium oxide films was detected within the (Al12Mg17?+???) eutectic structure of the interface next to the magnesium base metal. Despite different thicknesses of the interface, shear strengths of the Al 413/Mg couples prepared in 1.25?and 3?VRs were almost same. The study of the fracture surfaces of the Al 413/Mg couples revealed that the accumulated magnesium oxide films act as a weak point for initiation of longitudinal cracks and failure of the joint.  相似文献   

17.
In this study, a nano-composite composed of gelatin as the matrix and Si-Mg-FA nano-particles as an additive was deposited on the AZ31 Mg alloy via dip coating method. In addition, a coating composed of MgO, MgSiO3 and Mg2SiO4 phases was applied on the AZ31 Mg alloy by anodizing process. It was found that the Nano-composite coating with a uniform distribution of nano-particles within the gelatin matrix with the thickness of about 9 µm was dense, crack-free and uniform whereas the surface of anodized layer was relatively coarse due to the presence of flaws and micro-cracks. The surface morphology, EDS analysis and FTIR results revealed the ability of nano-composite coated specimen to form the bone-like apatite. Due to the presence of aforementioned phases and special surface features, the anodized specimen possessed higher and lower corrosion resistance than uncoated and nano-composite coated specimens, respectively. The passive coating resistances (RCT) of nano-composite, anodized specimen and uncoated samples were 2164, 1449 and 1024 Ω cm2, respectively.  相似文献   

18.
The presence of impurities like Mg2+, Mn2+, Zn2+, and Al3+ during electrowinning of nickel shows several effects. The effects include current efficiency, deposit quality, purity, crystallographic orientation, surface morphology, and polarization behavior. Addition of the impurities did not change the current efficiency significantly but did change the quality and purity of the electrodeposited nickel. Based on the quality of the deposits obtained, the tolerance limits of these impurities in nickel bath were obtained. Although no deviation of nickel structure from fee was observed, the peak height values for different orientations changed with all of the impurities and the values varied with impurity concentration. The surface morphologies of electrodeposited nickel in the presence of impurities also showed changes. The potentiodynamic scan curves for nickel deposition showed deviations in the presence of all the impurities studied. Based on the results, an attempt was made to correlate the various effects.  相似文献   

19.
20.
In the present study, microstructural and mechanical properties of diffusion bonding of AZ31–Mg with Al 5754, Al 6061, and Al 7039 alloys were compared under same conditions. The vacuum diffusion processes were performed at a temperature of 440 °C, the pressure of 29 MPa, and a vacuum of 1?×?10?4 torr for 60 min. The microstructural characterizations were investigated using optical microscopy and scanning electron microscopy equipped with EDS analysis and linear scanner. The XRD analysis was performed to study phase figures near the interface zone. The results revealed the formation of brittle intermetallic compounds like Al12Mg17, Al3Mg2, and their other combinations at bonding interfaces of all samples. Additionally, the hardness of Al alloys seemed to play a key role in increasing diffusion rate of magnesium atoms toward the aluminum atoms, with Al 6061 alloy having the highest diffusion rate. It consequently led to an increase in diffusion rate and thus formation of a strong diffusion bonding between magnesium and aluminum alloys. The highest strength was about 42 MPa for the diffusion bonding between Mg AZ31 and Al 6061. Further investigations on surfaces indicated that the brittle phases especially Al3Mg2 caused brittle fracturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号