共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
混沌优化算法和遗传算法的结合产生了变尺度混沌遗传算法(MSCGA)。该算法在不改变GA搜索机制的同时,根据搜索进程,不断缩小优化变量的搜索空间及调节系数,引导种群进行新一轮进化,从而产生更优的最优个体,改善了GA的性能。但是通过分析其本质,发现其中存在很大的重复性操作,没有考虑它们之间在优化过程中的某种相似之处。文章中对此算法进行讨论并对其进行优化。计算机仿真表明:优化后的算法具有更好的快速寻优能力。 相似文献
3.
采用变尺度混沌优化方法代替梯度下降法融入BP神经网络,在优化搜索过程中不断缩小搜索空间,克服了标准BP算法易陷入局部极小的缺点,能有效地寻找到BP神经网络权值的全局最优值。此外,进一步提出变尺度混沌优化与梯度下降法有机结合的算法,能有效缩短单一的变尺度混沌优化BP算法的训练时间。仿真结果表明,改进的BP神经网络具有实现简单、寻优性强和优化效率高等特点。 相似文献
4.
变尺度混沌优化方法及其应用 总被引:171,自引:12,他引:171
基于混沌变量,提出一种变尺度混沌优化方法,该方法不断缩小优化变量的搜索空间并不断提高搜索精度,从而有较高的搜索效率,应用该方法对6个测试函数进行优化计算得到了满意的效果。 相似文献
5.
变尺度混沌优化神经网络的研究 总被引:5,自引:0,他引:5
基于变尺度混沌优化的方法可以利用混沌变量的特定内在随机性和遍历性来跳出局部最优点,并可以变尺度搜索提高局部空间的搜索速度和精度。把该方法应用到神经网络的权值优化中,可以得到很好的效果。 相似文献
6.
基于逻辑自映射的变尺度混沌粒子群优化算法* 总被引:2,自引:0,他引:2
针对基本粒子群优化算法的早熟收敛问题,提出了一种基于逻辑自映射的变尺度混沌粒子群优化算法。该算法在粒子群优化算法每次寻优结束时,采用逻辑自映射函数产生混沌序列,在已搜索到的精英粒子附近尝试搜索更优解并动态收缩搜索范围,在防止算法过早陷入局部最优的同时提高了算法搜索的精度。仿真结果表明,新算法在寻优成功率和平均最优值方面有很大提高,在求解包括欺骗性函数和高维函数在内的多种函数优化问题方面具有良好的效果。 相似文献
7.
8.
蚁群混沌混合优化算法 总被引:2,自引:2,他引:2
为了克服混沌搜索的盲目性,提出了一种蚁群算法和混沌优化算法相结合的混合优化算法,该算法利用蚁群算法中信息素正反馈的思想指导当前混沌搜索的区域。工作蚁群按照信息素的浓度高低,分别按照不同的概率搜索不同的搜索区域,从而可减少混沌盲目搜索的次数。仿真结果表明,该方法能够明显提高混沌优化算法的寻优效率,同时算法的通用性将有所提高。另外,对于含有多个全局最优解的函数,在一次寻优过程中,该算法可以找到全部最优解,这是通常混沌搜索算法所不具备的。 相似文献
9.
10.
11.
12.
13.
14.
15.
增强型的蚁群优化算法 总被引:8,自引:1,他引:8
旅行商问题是一个NP-Hard组合优化问题。根据蚁群优化算法和旅行商问题的特点,论文提出了对蚁群中具有优质解的蚂蚁个体所走路径上的信息素强度进行增强的方法,并同其他的优化算法进行了比较,仿真结果表明,对具有全局和局部最优解的个体所走路径上的信息素强度进行增强的蚁群优化算法比标准的蚁群优化算法和其他优化算法在执行效率和稳定性上要高。 相似文献
16.
蚁群优化算法的研究和应用已取得了不少重要成果,然而在大规模优化应用中还存在搜索时间长的问题,为此研究了一种基于细粒度模型的并行蚁群算法。实验结果表明,该算法与最新的改进算法相比,搜索速度提高数十倍至数百倍以上。 相似文献
17.
18.
TSP问题(旅行商问题)是组合优化问题中最经典的NP问题之一,蚁群算法是基于群体的一种仿生算法,为求解复杂的组合优化问题提供了一种新思路,本文讨论了如何用基本的蚁群算法来求解TSP问题。 相似文献
19.
蚁群算法的研究现状及其展望 总被引:20,自引:0,他引:20
蚁群算法是一种新型的模拟进化算法,研究表明该睡具有并行性,鲁棒性等优良性质。本文阐述了蚁群算法的原理,介绍了该算法在理论和实际问题中的应用,并对其前景进行了展望。 相似文献
20.
TSP问题(旅行商问题)是组合优化问题中最经典的NP问题之一,蚁群算法是基于群体的一种仿生算法,为求解复杂的组合优化问题提供了一种新思路,本文讨论了如何用基本的蚁群算法来求解TSP问题。 相似文献