首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, heteroleptic ruthenium dye comprising a vinyl group between the carboxylate and bipyridine segments as well as extended π-conjugation of the ancillary ligand, employing alkyl-bithiophene, was synthesized. The dye displayed a remarkably high absorption coefficient of 2.51 × 104 M−1 cm−1 (at 562 nm) for its metal-to-ligand charge transfer band. The photo-to-current conversion efficiency of the corresponding dye-sensitized solar cell was 9.12% under AM 1.5 (100 mW/cm2) irradiation. Furthermore, owing to both the very strong metal-to-ligand charge transfer band and the large number of dye molecules adsorbed on the TiO2 electrode, the conversion efficiency of the dye-sensitized cell was >7.5% at a light intensity ≤198 mW cm−2.  相似文献   

2.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

3.
In the systems CoO–Al2O3–SiO2–H2O and CoO–Al2O3–SiO2–HCl–H2O, at initial pH between 5.5 and 8.1 and temperature of 200 °C, kaolinite is unstable and the following phases form through a dissolution-precipitation process: a) kaolinite and Co-bearing kaolinite; b) Al–Co–serpentine; and c) poorly crystalline phases. Identification of the several phases was carried out from a combination of X-ray diffraction and transmission/analytical electron microscopy.Co–kaolinite shows variable morphologies: a) Platy lath-shaped particles with very low Co content; b) Spherical particles, with relatively constant Co contents (in the order of 0.10 apfu); c) Kaolinite stacks with very variable Co contents (up to 0.25 apfu). Analytical data indicate that the presence of Co(OH)2 in the system favors the dissolution process as well as serpentine formation but it leads to the parallel formation of abundant poorly crystalline phases. The Co-content in kaolinite increased as a function of the Co(OH)2/CoCl2 ratio in the initial systems, and it is reflected by a parallel increase of the b-cell parameter of kaolinite. The average composition of the coexisting Al–Co–serpentine is: (Al1.20Fe0.11Co1.27)(Si1.64Al0.36)O5(OH,Cl)2, with Cl contents in the order of 0.14 apfu.The assemblage Co–kaolinite + Al–Co–serpentine, which appears to be stable at 200 °C, has not been described in natural environments, probably because it requires unusual Al- and Co-rich chemical systems.  相似文献   

4.
Two photocatalysts based on TiO2-pillared intercalated montmorillonite have been prepared by microwave for 10 min at 700 W or by furnace heating at 673 K. Montmorillonite pillaring with TiO2 increased the basal spacing to 14.7 Å (conventional heating) and 17.6 Å (microwave heating). XRD patterns of both materials showed the presence of 100% anatase with a slightly higher rate of crystallinity obtained through microwave calcination than by conventional heating at 673 K. The BET specific surface area of the microwave prepared photocatalyst (151 m2 g− 1) was 3 fold higher than those of the Degussa TiO2 P25. At pH = 5.8, the maximum adsorption capacity of Solophenyl red 3BL (a textile azo dye) on the TiO2-pillared montmorillonite calcined by microwave was 185 mg g− 1, whereas it was 1.4 and 3 fold lower on the TiO2-pillared montmorillonite calcined at 673 K, and on the Degussa TiO2 P25 respectively. The influence of pH on the adsorption of the dye depended on the pHZPC of the pillared montmorillonites.  相似文献   

5.
6.
γ-Al2O3 modified supports with bimodal pore-size distributions were prepared by the addition of different types of natural sepiolites (α or β) into alumina. The supports were characterized by nitrogen physisorption, mercury porosimetry, X-ray diffraction, HRTEM and DTA techniques. A wide range of SBET (94–238 m2 g− 1), pore volumes (0.3–0.82 cm3 g− 1), and pore sizes were obtained in the supports depending on the type of sepiolite and its concentration added into alumina. The pore sizes were distributed as follows: mesopores around 1.8 nm in radius, mesopores in the radius range 3.0–25 nm and macropores between 25 and 300 nm in radius. The shape of the pore-size distributions depended on the type of sepiolite: the modal peak for pores larger than 3.0 nm was broad with β-type sepiolites and narrow with α-type sepiolites. The mesopore and macropore sizes can be controlled by the type of sepiolite as well as its concentration added to alumina.  相似文献   

7.
A simple fluorescence technique is proposed for the measurement of the diffusion coefficient of oxygen into polystyrene–clay composite films. The composite films were prepared from the mixture of surfactant-free pyrene (P)-labeled polystyrene latexes (PS) and modified bentonite (MNaLB) at various compositions at room temperature. These films were annealed at 200 °C above the glass transition (Tg) temperature of polystyrene for 10 min. Oxygen diffusion into the films was monitored with steady state fluorescence (SSF) measurements. Measurements were performed at room temperature for different film compositions (0, 5, 10, 20, 30, 50 and 60 mass% modified bentonite) films to evaluate the effect of MNaLB content on oxygen diffusion. The diffusion coefficient, D of oxygen was determined by the fluorescence quenching method by assuming Fickian transport and increased from 7.4 × 10 10 to 26.9 × 10 10 cm2 s 1 with increasing MNaLB content. This increase in D value was explained by formation of microvoids in the film. These voids are large enough to contribute to the penetration of oxygen molecules through the films. The montmorillonite content did not affect the quenching rate constant, kq and mutual diffusion coefficient, Dm values.  相似文献   

8.
Chitosan intercalated montmorillonite (Chi-MMT) was prepared by dispersing sodium montmorillonite (Na+-MMT) into chitosan solution at 60 °C for 24 h. The Chi-MMT was characterized by XRD, XRF and FT-IR. The intercalation was accomplished via the ion-exchange of Na+ ions with –NH3+ of chitosan, resulting in the expansion of d001 from 1.42 nm of Na+-MMT to 2.21 nm of Chi-MMT. The chitosan content in the Chi-MMT measured by TGA was about 17 mass%. The adsorption capacity of Chi-MMT was investigated in comparison with the starting Na+-MMT and chitosan using three different cationic dyes, i.e. basic blue 9 (BB9), basic blue 66 (BB66) and basic yellow 1 (BY1). The Chi-MMT showed the highest adsorption capacity in the range of 46–49 mg/g when the initial dye concentration was 500 mg/L, being equivalent to 92–99 wt.% of dye removal. The adsorption capacities of Chi-MMT for all basic dyes increased with an increase of initial dye concentration. An increase of adsorption capability of Chi-MMT was attributed to the existence of intercalate-chitosan. It could enlarge the pore structure of Chi-MMT, facilitating the penetration of macromolecular dyes, and also electrostatically interact with the applied dyes. These results indicated the competency of Chi-MMT adsorbent for basic dye adsorption.  相似文献   

9.
The novel ligand 1-(2,4,6-trimethylbenzyl)-2-(2′-pyridyl)benzimidazole and its heteroleptic ruthenium (II) complex were synthesized. The complex was characterized using spectroscopic methods and cyclic voltammetry. Charge-separation was investigated within nanoporous titanium dioxide employing surface photovoltage spectroscopy. The performance of the ruthenium complex as a charge transfer photosensitizer in nanocrystalline, titanium dioxide-based, dye sensitized solar cells was studied under standard AM 1.5 sunlight using an electrolyte consisting of 0.6 M 1-butyl-3-methyl-imidazolium iodide, 0.1 M lithium iodide, 0.05 M iodine and 0.5 M 4-tert-butyl pyridine in 3-methoxy propyonitrile. The novel complex had a photocurrent density of 9.47 mA cm−2, 600 mV open circuit potential and 0.60 fill factor yielding an efficiency of 3.4%. The photovoltaic performance of the colorant was compared with that of cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2’-bipyridyl-4,4’-di-nonyl) ruthenium(II); both compounds exhibited similar efficiency, while the fill factor value was higher for the novel dye.  相似文献   

10.
Nanocrystalline diamond (NCD) coatings were grown by the hot-filament chemical vapour deposition (HFCVD) method on hydrogen plasma pretreated silicon nitride (Si3N4) substrates. The friction and wear behaviour of self-mated NCD films, submitted to unlubricated sliding and high applied loads (up to 90 N), was assessed using an oscillating ball-on-flat configuration in ambient atmosphere. The reciprocating tests revealed an initially high friction coefficient peak, associated to the starting surface roughness of NCD coatings (Rq = 50 nm). Subsequently, a steady-state regime with low friction coefficient values (0.01–0.04) sets in, related to a smoother (Rq = 17 nm) tribologically modified surface. A polishing wear mechanism governing the material loss was responsible for mild wear coefficients (k  10− 7 mm3 N− 1 m− 1). The hydrogen etching procedure notably increased the film adhesion with respect to untreated surfaces as demonstrated by the high threshold loads (60 N; 3.5 GPa) prior to film delamination.  相似文献   

11.
Human serum albumin (HSA), β-glucuronidase (GUS), and the Cry3Bb1 protein from Bacillus thuringiensis subsp. kumamotoensis are expressed by genetically-modified plants. Commercial samples of these proteins adsorbed and bound rapidly on the clay minerals, kaolinite (K) and montmorillonite (M). Adsorption increased as the concentration of protein increased and then reached a plateau. The greatest amount of adsorption and binding occurred with the Cry3Bb1 protein, of which there was no desorption: 6.7 ±0.21 μg adsorbed and bound μg− 1 of M; 2.1 ± 0.39 μg adsorbed and bound μg− 1 of K. With GUS, 2.2 ± 0.29 μg adsorbed and 1.7 ±0.21 μg bound μg− 1 of M; 1.5 ± 0.28 μg adsorbed and 1.0 ± 0.03 μg bound μg− 1 of K. HSA was adsorbed and bound the least: 1.2 ±0.04 μg adsorbed and 0.8 ± 0.05 μg bound μg− 1 of M; 0.4 ± 0.05 μg adsorbed and 0.4 ± 0.03 μg bound μg− 1 of K. However, X-ray diffraction analyses indicated that only HSA intercalated M, and none of the proteins intercalated K, a nonswelling clay. When bound, the proteins were not utilized for growth by mixed cultures of soil microorganisms, whereas the cultures readily utilized the free (i.e., not adsorbed or bound) proteins as sources of carbon and energy. The enzymatic activity of GUS was significantly enhanced when bound on the clay minerals. These results indicated that recombinant proteins expressed by transgenic plants could persist and function in soil after release in root exudates and from decaying plant residues as the result of the protection provided against biodegradation by binding on clay minerals.  相似文献   

12.
A new dinuclear complex [Cu2(OAc)2(OH)(dpa)2] PF6 · H2O (1) is prepared and structurally and magneto-structurally characterized. The monocationic core contains one acetate in familiar bidentate η112-bridge and another in the rare monoatomic bridge along with one hydroxo intermediary. 1 packs through N–H…O and O–H…O hydrogen bonds and π…π interaction resulting a 3D supramolecular continuum and displays high-energy intraligand 1(π − π*) fluorescence and intraligand 3(π − π*) phosphorescence in glassy solution.  相似文献   

13.
Cation exchange mechanism and rate of Cs+ exchange were investigated in < 2 μm and 20–2 μm particle size fractions of K-depleted phlogopite (Na-phlogopite). The K-depleted phlogopite was prepared from a natural phlogopite by a potassium removal method using sodium tetraphenylborate (NaTPB) at room temperature. X-ray diffraction (XRD) patterns revealed that interlayer K+ ions were completely replaced with sodium ions after the potassium removal treatment. Ion exchange isotherms and kinetics were determined for Na+ → Cs+ exchange with two particle size fractions. The isotherms indicated that both particle size fractions showed high selectivity for Cs+. Based on the isotherm tests, ΔGo values of < 2 μm and 20–2 μm particle fractions were − 6.83 kJ/mol and − 7.08 kJ/mol, respectively. Kinetics of Cs exchange revealed that the 20–2 μm particle size fraction of the K-depleted phlogopite took up more Cs+ ions than the < 2 μm particle size fraction. Various kinetic models were applied to describe Na+ → Cs+ exchange process. Elovich model described the kinetic data of the < 2 μm particle size fraction well, while the modified first-order model or parabolic diffusion model described the data of the 20–2 μm particle size fraction well.  相似文献   

14.
The work described here concerns the diffusion-convective mass transfer to flow-through and flow-by porous electrodes of nickel foam. Empirical correlations giving the product of the mass transfer coefficient and the specific surface areaa e of the material as a function of the pressure drop per unit electrode height and as a function of the grade characterizing the foam are proposed. The performance of various materials are compared in terms of vs the mean linear electrolyte flow velocity.Nomenclature a e specific surface area (per unit of total volume of electrode) (m–1) - A, B Ergun law coefficients determined in flow-by configuration - A, B Ergun law coefficients determined in flow-through configurationA, A (Pa m–3 s2);B, B (Pa m2 s–1) - C E entering concentration of ferricyanide ions (mole m–3) - D molecular diffusion coefficient (m2 s–1) - F Faraday number (C mol–1) - G grade of the foams - I L limiting current (A) - mean mass transfer coefficient (m s–1) - n number of stacked foam sheets in the electrode - P/H pressure drop per unit of height (Pa m–1) - Q v volumetric electrolyte flow rate (m3 s–1) - Re Reynolds number - Sc Schmidt number - Sh Sherwood number - T mean tortuosity of the foam pores - mean electrolyte velocity (m s–1) - V R electrode volume (m3) - X conversion - dynamic viscosity (kg m–1 s–1) - v number of electrons in the electrochemical reaction - v kinematic viscosity (m2 s–1)  相似文献   

15.
In order to assess the evolution of the confinement properties of clay engineered barriers (EBS) when in contact with metallic canisters containing radioactive wastes, Fe(0)-bentonite interactions need to be assessed. “45 days–80 °C” tests were performed using powdered FoCa7 bentonite and metallic iron. Since one fundamental parameter may be the available quantity of Fe(0), a wide range of Iron/Clay mass ratios (I/C) from 0 to 1/3 is used. The confinement power of clay material results from the swelling properties and the retention capacity. Thus, the major criterion which is chosen to assess the evolution of the confinement properties in this study is the variation of Cation Exchange Capacity (CEC). In parallel, the physico-chemical evolution of bentonite is studied using XRD and EDS-TEM microanalyses. The evolution of the distribution of iron environments is obtained by 57Fe Mössbauer spectroscopy.This study evidences that both kaolinite and smectite from the bentonite are altered into SiAlFe gels when in contact with Fe(0). These gels maturates into Fe-rich di-trioctahedral phyllosilicates, whose composition is bounded by the one of odinite and greenalite in a Fe–M+–4Si diagram when I/C = 1/3. Most of all, it is evidenced that the reaction depends on the available quantity of Fe(0). When the I/C ratio is between 1/30 and 1/7.5, the exchange capacity of FoCa7 bentonite starts decreasing, the consumption of Fe(0) becomes significant, the alteration of smectites occurs and secondary oxides are formed. The crystallization of Fe-rich phyllosilicates is observable when I/C ratio is higher, from a threshold between 1/7.5 and 1/5. Above I/C = 1/3.75, initial iron oxides are strongly consumed and participate in the incorporation of Fe2+ and Fe3+ in gels or new phyllosilicates octahedra.These experimental results were used as input data for the prediction of the long-term evolution of the EBS using Crunch reaction-transport model.  相似文献   

16.
This paper deals with the characterization of three nickel foams for use as materials for flow-through or flow-by porous electrodes. Optical and scanning electron microscope observations were used to examine the pore size distribution. The overall, apparent electrical resistivity of the reticulated skeleton was measured. The BET method and the liquid permeametry method were used to determine the specific surface area, the values of which are compared with those known for other materials.Nomenclature a e specific surface area (per unit of total volume) (m–1) - a s specific surface area (per unit of solid volume) (m–1) - (a e)BET specific surface area determined by the BET method (m–1) - (a e)Ergun specific surface area determined by pressure drop measurements (m–1) - mean pore diameter (m) - mean pore diameter determined by optical microscopy (m) - mean pore diameter using Ergun equation (m) - e thickness of the skeleton element of the foam (m) - G grade of the foam (number of pores per inch) - P/H pressure drop per unit height of the foam (Pa m–1) - r electrical resistivity ( m) - R h hydraulic pore radius (m) - T tortuosity - mean liquid velocity (m s–1) Greek symbols mean porosity - circularity factor - dynamic viscosity (kg m–1 s–1) - liquid density (kg m–3) - pore diameter size dispersion  相似文献   

17.
The adsorption of CO on planar Au/TiO2 model catalysts was studied by polarization-modulation infrared reflection–absorption spectroscopy (PM-IRAS) under catalytically relevant pressure (10–50 mbar) and temperature (30–120 °C) conditions, both in pure CO and in CO/O2 reaction gas mixtures. The adsorption energy of CO on the Au particles was determined by a quantitative analysis of the temperature dependence of the CO absorption intensity in adsorption isobars. The data reveal considerable effects of the Au particle size when pure CO is used; the initial adsorption energy decreases from 74 kJ mol−1 (2 nm mean Au particle diameter) to 62 kJ mol−1 (4 nm). For CO/O2 gas mixtures, the initial CO adsorption energy is, irrespective of the Au particle size, constant at 63 kJ mol−1 (i.e., the CO adsorption energy is reduced for smaller Au particles), but this effect vanishes for larger Au particles.  相似文献   

18.
The feasibility of the electrochemical machining (ECM) of pure TiC, ZrC, TiB2 and ZrB2 has been established. In addition, the ECM behaviour of a cemented TiC/10% Ni composite has been investigated and compared to that of its components, TiC and nickel. ECM was carried out in 2M KNO3 and in 3 M NaCl at applied voltages of 10–31 V and current densities of 15–115 A cm–2. Post-ECM surface studies on the TiC/Ni composite showed preferential dissolution of the TiC phase during machining.Nomenclature E 0 thermodynamic equilibrium potential (V) - F Faraday's constant (96 500 Coul mol–1) - toolpiece feed rate (cm s–1 or mm min–1) - I current (A) - i current density (A cm–2) - k electrolyte conductivity (–1 cm–1) - l interelectrode gap (mm) - mass removal rate (g s–1 or g min–1) - M formula weight (g mol–1) - Q electrolyte flow rate (l min–1) - t electrolyte temperature (°C) - V applied voltage (V) - V IR ohmic drop through electrolyte (V) - z apparent valence of dissolution (eq mol–1) - i overvoltages (V) - density of refractory materials (g cm–3)  相似文献   

19.
A mathematical model is presented for the optimization of the hydrogen-chlorine energy storage system. Numerical calculations have been made for a 20 MW plant being operated with a cycle of 10 h charge and 10h discharge. Optimal operating parameters, such as electrolyte concentration, cell temperature and current densities, are determined to minimize the investment of capital equipment.Nomenclature A ex design heat transfer area of heat exchanger (m2) - a F electrode area (m2) - heat capacity of liquid chlorine (J kg–1K–1) - heat capacity of hydrogen gas at constant volume (J kg–1 K–1) - c p,hcl heat capacity of aqueous HCl (J kg–1 K–1) - C $acid cost coefficient of HCl/Cl2 storage ($ m–1.4) - C $ex cost coefficient of heat exchanger ($ m–1.9) - C $F cost coefficient of cell stack ($ m–2) - cost coefficient of H2 storage ($ m–1.6) - C $j cost coefficient of equipmentj ($/unit capacity) - C $pipe cost coefficient of pipe ($ m–1) - C $pump cost coefficient of pump ($ J–0.98 s–0.98) - E cell voltage (V) - F Faraday constant (9.65 × 107 C kg-equiv–1) - F j design capacity of equipmentj (unit capacity) - G D design electrolyte flow rate (m3 h–1) - heat of formation of liquid chlorine (J kg-mol–1 C12) - H f 0 ,HCl heat of formation of aqueous HCl (J kg-mol–1HCl) - H m total mechanical energy losses (J) - I total current flow through cell (A) - i operating current density of cell stack (A m–2) - L length of pipeline (m) - N number of parallel pipelines - nHCl change in the amount of HCl (kg-mole) - P pressure of HCl/Cl2 storage (kPa) - p 1 H2 storage pressure at the beginning of charge (kPa) - p 2 H2 storage pressure at the end of charge (kPa) - –Q ex heat removed through the heat exchanger (J) - R universal gas constant (8314 J kg-mol–1 K–1) - the solubility of chlorine in aqueous HCl (kg-mole Cl2 m–3 solution) - T electrolyte temperature (K) - T 2 electrolyte temperature at the end of charge (K) - T max maximum electrolyte temperature (K) - T min minimum electrolyte temperature (K) - t final time (h) - t ex the length of time for the heat exchanger operation (h) - Uit ex overall heat transfer coefficient (J h–1 m–2 K–1) - V acid volume of HCl/Cl2 storage (m3) - } volume of H2 storage (m3) - v design linear velocity of electrolyte (m s–1) - amount of liquid chloride at timet (kg) - amount of liquid chlorine at timet 0 (kg) - w hcl amount of aqueous HCl solution at timet (kg) - W p design brake power of pump (J s–1) - X electrolyte concentration of HCl at timet (wt fraction) - X f electrolyte concentration of HCl at the end of charge (wt fraction) - X i electrolyte concentration of HCl at the beginning of charge (wt fraction) - X 0 electrolyte concentration of HCl at timet 0 (wt fraction) - Y objective function to be minimized ($ kW–1 h–1) - j the scale-up exponent of equipmentj - overall electric-to-electric efficiency (%) - acid safety factor of HCl/Cl2 storage - fractional excess of liquid chlorine - p pump efficiency - average density of HCl solution over the discharge period (kg m–3)  相似文献   

20.
A new process for removal of sulphur dioxide from waste gases is proposed consisting of both electrochemical and catalytic sulphur dioxide oxidation. In the catalytic step a part of the sulphur dioxide is oxidized by oxygen on copper producing sulphuric acid and copper sulphate. The other part is oxidized electrochemically on graphite. The cathodic reaction of this electrolysis is used for recovering the copper dissolved in the catalytic step. The basic reactions of this process have been studied experimentally in detail. It has been shown that sulphur dioxide can be electrochemically oxidized on carbon electrodes to sulphuric acid with high current efficiency. The reaction rate of the electrochemical copper deposition is increased by dissolved sulphur dioxide in the electrolyte. The catalytic oxidation of sulphur dioxide on copper has been investigated for different sulphur dioxide concentrations and temperatures. The ratio of the reaction products, sulphuric acid and copper sulphate, varies over a wide range depending on the experimental conditions.Nomenclature SO2 concentration (gas phase) (vol % SO2) - SO2 concentration (electrolyte) (g l–1) - E potential vs saturated calomel electrode (V) - E s specific energy consumption (W g–1 SO2) - F Faraday constant (A s–1 mol–1) - i current density (mA cm–2) - molecular weight (g mol–1) - T temperature (° C) - U c cell voltage (V) - v e number of electrons being transferred - space-time yield of SO2-oxidation (g SO2 h–1 dm–3) - cu space-time yield of Cu-corrosion (g Cu h–1 dm–3) - ratio - fractional conversion of SO2 - current efficiency for SO2 oxidation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号