首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Cu-In-Zn-Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn.The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu-In-Zn-Se compound.They were in the polycrystalline nature without any post-thermal process,and the main orientation was found to be in the (112) direction with tetragonal crystalline structure.With increasing annealing temperature,the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm.The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2.However,EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film.According to the optical analysis,the transmittance values of the films increased with the annealing temperature.The absorption coefficient of the films was calculated as around 105 cm-1 in the visible region.Moreover,optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature.The temperature-dependent dark-and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.  相似文献   

2.
The apparent activation energy for recrystallization during self-annealing of 1.5-μm-thick electroplated copper films was determined using constant-heating-rate scans in a differential scanning calorimeter (DSC). The apparent-activation energy was measured to be 0.62 eV/atom. Ex-situ microscopy studies showed that self-annealing in electroplated Cu films is characterized by site-saturated nucleation and diffusion-limited, two-dimensional grain growth. For a transformation with these characteristics, the apparent activation energy measured using a differential scanning calorimeter corresponds to the activation energy for grain-boundary motion. The measured activation energy is reasonably close to values reported for grain boundary motion from in-situ microscopy studies. The value is also close to the activation energy for grain boundary diffusion in Cu. This work demonstrates the feasibility of using differential scanning calorimetry (DSC) as a relatively straightforward method to study the kinetics of the self-annealing process.  相似文献   

3.
正Device characteristics of TiO_2 gate dielectrics deposited by a sol-gel method and DC sputtering method on a P-type silicon wafer are reported.Metal-oxide-semiconductor capacitors with Al as the top electrode were fabricated to study the electrical properties of TiO_2 films.The films were physically characterized by using X-ray diffraction,a capacitor voltage measurement,scanning electron microscopy,and by spectroscopy ellipsometry.The XRD and DST-TG indicate the presence of an anatase TiO_2 phase in the film.Films deposited at higher temperatures showed better crystallinity.The dielectric constant calculated using the capacitance voltage measurement was found to be 18 and 73 for sputtering and sol-gel samples respectively.The refractive indices of the films were found to be 2.16 for sputtering and 2.42 for sol-gel samples.  相似文献   

4.
The effects of different copper doping concentrations on the properties of SiO2 encapsulated CdSe films have been investigated. Two methods were used to dope the films with copper: ion implantation and diffusion from a surface layer. The room temperature dark resistivity of films annealed in oxygen at 450°C was found to increase as the copper concentration was increased until a maximum resistivity of 108 ohm cm occurred at a copper concentration of 1020 atoms cm−3. The room temperature resistivity in the light was found to be independent of the copper concentration and whether the films were annealed in argon or oxygen. During annealing the grains grew from 0.03 μm to 0.3 μm and this growth was independent of the doping or the annealing ambient. The energy levels, carrier mobilities, and microstructure of the annealed films were dependent on the method of doping. The ion implanted films had an additional energy level at 0.33 eV and their mobility was a factor of 4 smaller than films doped by the surface diffusion method, whose mobilities were 20 to 35 cm2V−1 s−1. The addition of chlorine to copper doped films had no effect on either the resistivity or photosensitivity but slowed the response times of the photocurrent by a factor of 10. No energy levels were observed which could be associated with the copper nor was the copper found to affect the density of the observed intrinsic levels at 0.65 and 1.1 eV.  相似文献   

5.
The dielectric function of some phthalocyanine compounds (ZnPc, H2Pc, CuPc, and FePc) were investigated by analyzing the measured capacitance and loss tangent data. The real part of the dielectric constant, ε1, varies strongly with frequency and temperature. The frequency dependence was expressed as: ε1 = n, where the index, n, assumes negative values (n < 0). In addition, the imaginary part of the dielectric constant, ε2, is also frequency and temperature dependent. Data analysis confirmed that ε2 = m with values of m less than zero. At low frequencies and all temperatures, a strong dependence is observed, while at higher frequencies, a moderate dependence is obvious especially for the Au-electrode sample. Qualitatively, the type of electrode material had little effect on the behavior of the dielectric constant but did affect its value. Analysis of the AC conductivity dependence on frequency at different temperatures indicated that the correlated barrier hopping (CBH) model is the most suitable mechanism for the AC conduction behavior. Maximum barrier height, W, has been estimated for ZnPc with different electrode materials (Au and Al), and had values between 0.10 and 0.9 eV. For both electrode types, the maximum barrier height has strong frequency dependence at high frequency and low temperatures. The relaxation time, τ, for ZnPc and FePc films increases with decreasing frequency. The activation energy was derived from the slopes of τ versus 1/T curves. At low temperatures, an activation energy value of about 0.01 eV and 0.04 eV was estimated for ZnPc and FePc, respectively. The low values of activation energy suggest that the hopping of charge carriers between localized states is the dominant mechanism.  相似文献   

6.
Due to the difficulty in synthesizing perhalogenated metallophthalocyanine, the method of ammonium molybdate solid phase catalysis was introduced, and by using tetrachlorophthalic anhydride and urea as the raw materials, hexadecachloro zinc phthalocyanine (ZnPcCl16) was synthesized. Components of the composite were analyzed by energy spectrum, and its functional group structures and absorption peaks were characterized by IR and UV-vis spectroscopy. The thin films of gas sensors were prepared in a vacuum evaporation system and evaporated onto SiO2 substrates, where sensing electrodes were made by MEMS micromachining. The optimal conditions for the films are: substrate temperature of 150 ℃ evaporation current of 95 A and film thickness of 50 nm. The result showed that the sensors were ideally sensitive to Cl2 gas and could detect the minimum concentration of 0.3 ppm.  相似文献   

7.
Here we discuss the synthesis of copper(II)oxide(CuO)and manganese(Mn)-doped CuO thin films varying with 0 to 8 at%Mn using the spray pyrolysis technique.As-deposited film surfaces comprised of agglomerated spherical nanoparticles and a semi-spongy porous structure for 4 at%Mn doping.Energy dispersive analysis of X-rays confirmed the chemical composi-tion of the films.X-ray diffraction spectra showed a polycrystalline monoclinic structure with the predominance of the(11)peak.Optical band gap energy for direct and indirect transitions was estimated in the ranges from 2.67-2.90 eV and 0.11-1.73 eV,respectively.Refractive index and static dielectric constants were computed from the optical spectra.Electrical resistivity of CuO and Mn-doped CuO(Mn:CuO)thin films was found in the range from 10.5 to 28.6Ω·cm.The tiniest electron effective mass was calculated for 4 at%Mn:CuO thin films.P to n-type transition was observed for 4 at%Mn doping in CuO films.Carrier con-centration and mobility were found in the orders of 1017cm-3and 10-1cm2/(V·s),respectively.The Hall coefficient was found to be between 9.9 and 29.8 cm3/C.The above results suggest the suitability of Mn:CuO thin films in optoelectronic applications.  相似文献   

8.
The crystallization kinetics of Sn40Se60 thin films has been successfully investigated using sheet resistance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass substrates. The crystallization temperature for Sn40Se60 thin film was found to be 156.6 ± 0.3 ℃. In the as-deposited state, the sheet resistance was found to be 195 MΩ, this value declined to 1560 Ω/口 upon annealing. The value of activation energy obtained from the Kissinger plot was 0.62 ± 0.07 eV. From the results obtained, Sn40Se60 is a promising alloy for PCM application because of its high electrical contrast, high crystallization temperature, and relatively high activation energy.  相似文献   

9.
Highly crystalline and transparent cadmium sulphide(CdS) films were deposited on glass substrate by electron beam evaporation technique.The structural and optical properties of the films were investigated.The X-ray diffraction analysis revealed that the CdS films have a hexagonal structure and exhibit preferred orientation along the(002) plane.Meanwhile,the crystalline quality of samples increased first and then decreased as the substrate temperature improved,which is attributed to the variation in film thickness.UV-vis spectra of CdS films indicate that the absorption edge becomes steeper and the band gap present fluctuation changes in the range of 2.389-2.448 eV as the substrate temperature increased.The photoluminescence peak of the CdS films was found to be broadened seriously and there only emerges a red emission band at 1.60 eV.The above results were analyzed and discussed.  相似文献   

10.
The role of deposition rate in the structural,optical and electrical properties of SnO2 thin films deposited by electron beam evaporation method is investigated by varying the deposition powers viz.50,75,and 100 W.The structural characterization of the films is done by X-ray diffraction (XRD) technique.The surface morphology of the films is studied by scanning electron microscopy (SEM).Rutherford back scattering (RBS) measurements revealed the thickness of the films ranging from 200 nm to 400 and also a change in the concentration of oxygen vacancies which is found to be the maximum in the film deposited at the lowest deposition rate.Optical absorption spectrum is recorded using the UV-V is spectroscopy and the films are found to be transparent in nature.A shift in the absorption edge is observed and is attributed to a different level of allowed energy states in conduction band minimum.The Hall effect and electrical measurements show a variation in the carrier concentrations,mobility and resistivity of the films.In order to explore a better compromise in electrical and optical properties for transparent electrode applications,skin depths calculations are also done to find the optimized values of carrier concentration and mobility.  相似文献   

11.
多层铜布线CMP后表面残留CuO颗粒的去除研究   总被引:2,自引:1,他引:1  
This article introduces the removal technology of CuO particles on the post CMP wafer surface of multi-layered copper. According to the Cu film corrosion curve with different concentrations of HEO2 and the effect curve of time on the growth rate of CuO film, CuO film with the thickness of 220 nm grown on Cu a surface was successfully prepared without the interference of CuC12.2H20. Using the static corrosion experiment the type of chelating agent (FA/O II type chelating agent) and the concentration range (10-100 ppm) for CuO removal was determined, and the Cu removal rate was close to zero. The effect of surfactant on the cleaning solution properties was studied, and results indicated that the surfactant has the effect of reducing the surface tension and viscosity of the cleaning solution, and making the cleaning agent more stable. The influence of different concentrations of FA/O I type surfactant and the mixing of FA/O II type chelating agent and FA/O I type surfactant on the CuO removal effect and the film surface state was analyzed. The experimental results indicated that when the concentration of FA/O I type surfactant was 50 ppm, CuO particles were quickly removed, and the surface state was obviously improved. The best removal effect of CuO on the copper wiring film surface was achieved with the cleaning agent ratio of FA/O II type chelating agent 75 ppm and FA/O I type surfactant 50 ppm. Finally, the organic residue on the copper pattern film after cleaning with that cleaning agent was detected, and the results showed that the cleaning used agent did not generate organic residues on the film surface, and effectively removes the organic residue on the water.  相似文献   

12.
Community Question Answering (CQA) websites have greatly facilitated users' lives, with an increasing number of people seeking help and exchanging ideas on the Internet. This newlymerged community features two characteristics: social relations and an ask-reply mechanism. As users' behaviours and social statuses play a more important role in CQA services than traditional answer retrieving websites, researchers' concerns have shifted from the need to passively find existing answers to actively seeking potential reply providers that may give answers in the near future. We analyse datasets derived from an online CQA system named "Quora", and observed that compared with traditional question answering services, users tend to contribute replies rather than questions for help in the CQA system. Inspired by the findings, we seek ways to evaluate the users' ability to offer prompt and reliable help, taking into account activity, authority and social reputation char- acteristics. We propose a hybrid method that is based on a Question-User network and social network using optimised PageRank algorithm. Experimental results show the efficiency of the proposed method for ranking potential answer-providers.  相似文献   

13.
A multi-channel,fully differential programmable chip for neural recording application is presented.The integrated circuit incorporates eight neural recording amplifiers with tunable bandwidth and gain,eight 4thorder Bessel switch capacitor filters,an 8-to-1 analog time-division multiplexer,a fully differential successive approximation register analog-to-digital converter(SAR ADC),and a serial peripheral interface for communication.The neural recording amplifier presents a programmable gain from 53 dB to 68 dB,a tunable low cut-off frequency from 0.1 Hz to 300 Hz,and 3.77 μVrms input-referred noise over a 5 kHz bandwidth.The SAR ADC digitizes signals at maximum sampling rate of 20 kS/s per channel and achieves an ENOB of 7.4.The integrated circuit is designed and fabricated in 0.18-μm CMOS mix-signal process.We successfully performed a multi-channel in-vivo recording experiment from a rat cortex using the neural recording chip.  相似文献   

14.
Apower-efficient 12-bit40-MS/spipelineanalog-to-digitalconverter(ADC)implementedina0.13 μm CMOS technology is presented. A novel CMOS bootstrapping switch, which offers a constant on-resistance over the entire input signal range, is used at the sample-and-hold front-end to enhance the dynamic performance of the pipelined ADC. By implementing with 2.5-bit-per-stage and a simplified amplifier sharing architecture between two successive pipeline stages, a very competitive power consumption and small die area can be achieved. Meanwhile, the substrate-biasing-effect attenuated T-type switches are introduced to reduce the crosstalk between the two op- amp sharing successive stages. Moreover, a two-stage gain boosted recycling folded cascode (RFC) amplifier with hybrid frequency compensation is developed to further reduce the power consumption and maintain the ADC's performance simultaneously. The measured results imply that the ADC achieves a spurious-free dynamic range (SFDR) of 75.7 dB and a signal-to-noise-plus-distortion ratio (SNDR) of 62.74 dB with a 4.3 MHz input signal; the SNDR maintains over 58.25 dB for input signals up to 19.3MHz. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are -0.43 to +0.48 LSB and -1.62 to + 1.89 LSB respectively. The prototype ADC consumes 28.4 mW under a 1.2-V nominal power supply and 40 MHz sampling rate, transferring to a figure- of-merit (FOM) of 0.63 pJ per conversion-step.  相似文献   

15.
16.
A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 #m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.  相似文献   

17.
一种应用于GPS接收机的高线性度SiGe HBT低噪声放大器   总被引:1,自引:1,他引:0  
A high linearity 1.575 GHz SiGe:HBT low noise amplifier (LNA) for global positioning system applications is described. The bipolar cascoded with an MOSFET LNA was fabricated in a commercial 0.18 μm SiGe BiCMOS process, A resistor bias feed circuit with a feedback resistor was designed for the LNA input transistor to improve its intermodulation and compression performance. The packaged chip tested on board has displayed a noise figure of 1. I 1 dB, a power gain of 18 dB, an output 1 dB compression point of +7.8 dBm and an input third-order intercept point of +1.8 dBm. The chip occupies a 500 × 560μm^2 area and consumes 3.6 mA from a 2.85 V power supply.  相似文献   

18.
A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced,and includes a noise-cancelling low-noise amplifier(LNA),an RF programmable gain amplifier(RFPGA) and a current communicating passive mixer.The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA.An RFPGA with five stages provides large dynamic range and fine gain resolution.A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor,and optimum linearity and symmetrical mixing is obtained at the same time.The RF front-end is implemented in a 0.25 μm CMOS process.Tests show that it achieves an ⅡP3(third-order intercept point) of –17 dBm,a conversion gain of 39 dB,and a noise figure of 5.8 dB.The RFPGA achieves a dynamic range of –36.2 to 23.5 dB with a resolution of 0.32 dB.  相似文献   

19.
This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier(LNA),current-reuse V –I converter,active double balanced mixer and transimpedance amplifier for short range device(SRD) applications.With the proposed current-reuse LNA,the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices.The RF front-end was fabricated in 0.18 μm RFCMOS process and occupies a silicon area of just 0.11 mm2.Operating in 433 MHz band,the measurement results show the RF front-end achieves a conversion gain of 29.7 dB,a double side band noise figure of 9.7 dB,an input referenced third intercept point of –24.9 dBm with only 1.44 mA power consumption from 1.8 V supply.Compared to other reported front-ends,it has an advantage in power consumption.  相似文献   

20.
A programmable high precision multiplying DAC (MDAC) is proposed. The MDAC incorporates a frequency-current converter (FCC) to adjust the power versus sampling rate and a programmable operational am- plifier (POTA) to achieve the tradeoff between resolution and power of the MDAC, which makes the MDAC suitable for a 12 bit SHA-less pipelined ADC. The prototype of the proposed pipelined ADC is implemented in an SMIC CMOS 0.18 μm 1P6M process. Experimental results demonstrate that power of the proposed ADC varies from 15.4 mW (10 MHz) to 63 mW (100 MHz) while maintaining an SNDR of 60.5 to 63 dB at all sampling rates. The differential nonlinearity and integral nonlinearity without any calibration are no more than 2.2/-1 LSB and 1.6/-1.9 LSB, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号