首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present results of a study conducted to better understand the yield and flow response of amorphous poly(bisphenol A carbonate), PC‐Lexan® (PC), under uniaxial compression and combined compression‐and‐shear impact loading. A split Hopkinson pressure bar (SHPB) is utilized to obtain nearly adiabatic uniaxial compression response of the PC in the strain‐rate range of 1000–2000 s?1. Since temperature is expected to play an important role in governing the dynamic response of PC, nearly isothermal SHPB tests are also conducted and compared with the adiabatic response. In order to investigate the coupling of shear behavior and dilatation in PC at high loading rates, combined compression‐and‐shear plate impact experiments are conducted at strain‐rates in the range of 105–106 s?1. In addition, novel plate impact experiments are conducted to better understand the evolution of the shearing resistance of PC in response to sudden alterations (drop) in hydrostatic pressure under extremely high shearing rates. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
Because of their many unique and desirable properties, engineering polymers have increasingly been applied in applications where impact behavior is of primary concern. In this paper, the impact behavior of a glassy polymer acrylonitrile‐butadiene‐styrene (ABS) and a semicrystalline polymer alloy of polycarbonate and polybutylene‐terephthalates (PBT) are obtained as a function of impact velocity and temperature from the standard ASTM D3763 multiaxial impact test. As computer simulation of destructive impact events requires two material models, a constitutive model and a failure model, uniaxial mechanical tests of the two polymers are carried out to obtain true stress vs, true strain curves at various temperatures and strain rates. The generalized DSGZ constitutive model, previously developed by the authors to uniformly describe the entire range of deformation behavior of glassy and semicrystalline polymers for any monotonic loading modes, is calibrated and applied. The thermomechanical coupling phenomenon of polymers during high strain rate plastic deformation is considered and modeled. A failure criterion based on maximum plastic strain is proposed. Finally, the generalized DSGZ model, the thermomechanical coupling model, and the failure criterion are integrated into the commercial finite element analysis package ABAQUS/Explicit through a user material subroutine to simulate the multiaxial impact behavior of the two polymers ABS and PBT. Impact load vs. striker displacement curves and impact energy vs. striker displacement curves from computer simulation are compared with multiaxial impact test data and were found to be in good agreement.  相似文献   

3.
Investigation of the flexed plate impact of polymers requires the study of the local plate reaction during the contact between the hemispherical tip and the specimen. The current work investigates the low energy impact indentation with a hemispherical indenter applied to a polymer sheet with a ductile behavior. The samples were freely supported on a very rigid steel plate and transversely collided by the instrumented dart. The restitution coefficients are calculated, and a lumped mass‐spring model based on the Hertz law, which agrees with the experimental contact forces, restitution coefficients, indenter depth of penetration and permanent deformations is developed. This is an indirect method to estimate the Young's modulus at these relatively high strain rates. The influence of the geometrical parameters of the test such as target thickness, drop mass, indenter diameter, along with impact velocity are analyzed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
To clarify the mechanism of the deformation and fracture in a low‐velocity impact test on the isotactic polypropylene (i‐PP) sheet made by injection molding, the change of the style of fracture and the form of deformation was examined while changing the speed of the striker in a low‐velocity impact test. In the injection molding sheet, an oriented skin layer of some thickness is formed on the surface of the sample sheet. By the stress perpendicular to the orientation direction of the skin layer, crazes were formed easily in parallel with the orientation direction in this layer, and cracks were formed from there. Because these cracks bring the sample sheet a strong restraint of strain, a high stress concentration occurs at the end of this crack even if the formation of the oriented layer is limited on the surface of the sample sheet only, and the low‐velocity impact test leads the sample sheet to a brittle fracture. As a result, the injection molding sheet that forms oriented structure on its surface causes the ductility‐brittleness transform at a lower velocity of deformation compared with the nonoriented sheet. POLYM. ENG. SCI., 53:2659–2665, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
In a laminated‐sheet microchannel reactor, several microchannel sheets with the same or different structures are mutually laminated together. The effect of microchannel and manifold structure as well as the number of laminated sheets on the velocity distribution among microchannels in each sheet with the same structure is investigated. Results indicate that a large microchannel length, a high‐aspect‐ratio microchannel, and centrosymmetric manifold structure are favorable for a relatively uniform velocity distribution in each sheet. Considering the centrosymmetric manifold structure, a shorter distance from inlet and outlet to microchannels in direction of the microchannel width and a longer distance to the microchannel array in direction of the microchannel length can contribute to a more uniform velocity distribution. The laminated‐sheet number has only a minor impact on the velocity distribution among microchannels in each sheet.  相似文献   

6.
The behind‐plate overpressure effect by a reactive material projectile with a density of 7.7 g cm−3 was investigated by ballistic impact and sealed chamber tests. The reactive projectile was launched onto the initially sealed test chamber with a 2024‐T3 aluminum cover plate with a thickness of 3 mm, 6 mm, and 10 mm, respectively. Moreover, the overpressure signals in the test chamber were recorded by a pressure sensor and a data acquisition system. The experimental results show that the behind‐plate overpressure effect is significantly influenced by plate thickness and impact velocity. For a given plate thickness, the peak overpressure in the test chamber shows an increasing trend with increase of impact velocity. However, for a given impact velocity, when impacting the 6 mm thick aluminum plate, the peak overpressure measured and the impulse delivered to chamber are higher than the values recorded for the 3 mm and 10 mm thick aluminum plates. As such, it is inferred that there is an optimum plate thickness to maximize the behind‐plate overpressure effect by reactive projectile.  相似文献   

7.
8.
A parametric study of steady, compressible boundary-layer flows induced by a moving continuous flat plate or an axisymmetric body is conducted employing an implicit finite-difference numerical scheme. Exact solutions are sought in the framework of boundary-layer theory. First order compressible boundary-layer equations are solved for the flat plate case while for the axisymmetric body, the first order effect of transverse curvature is included. The similarity solutions are first obtained and a step by step integration technique marching along the body is used to find the non-similar solutions in the whole flow field. A polyester plane sheet or fiber with velocity and temperature gradients in the direction of motion is selected as a typical example. Boundary layer velocity and temperature profiles as well as frictional drag and heat transfer on the body are determined along with other relevant boundary-layer parameters. Comparisons to previous investigations are made for coefficient of friction for both planar and axisymmetric bodies, and for heat transfer on plane bodies.  相似文献   

9.
Liquid in a Petri dish spontaneously circulates in a radial pattern, even when the dish is at rest. These fluid flows have been observed and utilized for biological research, but their origins have not been well‐studied. Here, particle‐tracking to measure velocities of radial fluid flows, which are shown to be linked to evaporation, is used. Infrared thermal imaging was used to identify thermal gradients at the air‐liquid interface and at the bottom of the dish. Two‐color ratiometric fluorescence confocal imaging was used to measure thermal gradients in the vertical direction within the fluid. A finite‐element model of the fluid, incorporating the measured temperature profiles, shows that buoyancy forces are sufficient to produce flows consistent with the measured particle velocity results. Such flows may arise in other dish or plate formats, and may impact biological research in positive or negative ways. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2227–2233, 2016  相似文献   

10.
An approach to predict the strain recovery behavior of polycarbonate (PC) and high impact polystyrene (HIPS) under isothermal and non-isothermal conditions in a solid-phase forming environment is presented in this paper. The constants A and n of a power law relationship of the form ?(t) or δ(t) = Atn, fitted to isothermal creep and stress relaxation data, were determined over a wide range of temperatures for both materials. An expression for isothermal recovery was derived and compared to experimental data. Master curves and the resultant shift factors, obtained by superposing the stress relaxation and creep data (both in tension and compression) were used with the time-temperature super position principle to numerically evaluate uniaxial strain recovery under a specific temperature history. The average temperature history obtained by numerically solving for the temperature distribution in a disc, at an initially high temperature and in contact with a cold metal surface, was used for the non-isothermal case. The theoretical results were compared with recovery data obtained from non-isothermal backward extrusion tests with a temperature history similar to the one described above. Reasonably good agreement was obtained.  相似文献   

11.
An analysis for the transient deflections, bending strains, and interlaminar shear stresses in a simply supported laminated composite plate subject to low velocity impact has been obtained using a series solution of the plate governing equations. Results are presented showing the effect of plate geometry and impact location on damage mode. Computed stresses and strain are compared with impact test data to verify, the analysis.  相似文献   

12.
Simple shear plastic deformation behavior of polycarbonate (PC) plates due to the novel equal channel angular extrusion (ECAE) process is modeled using a commercial finite element methods (FEM) package. The true stress and true strain contour plots as well as the strain rate variation across the PC plate during the ECAE process are analyzed. The FEM results correlate well with the experimental findings. The present study indicates that the novel ECAE process is effective in producing a high degree of simple shear plastic deformation across the extruded polycarbonate plate. The high degree of plastic deformation due to ECAE induces a high level of nearly uniform molecular orientation across the extruded PC plate. As a result, significantly improved physical and mechanical properties in PC are expected. The simple shear plastic deformation behavior of PC plate, as a function of extrusion rate and temperature, is investigated. The significance of the ECAE process for fabricating polymer parts is also discussed.  相似文献   

13.
A thermodynamically consistent rate‐type viscoelastic–viscoplastic constitutive model is developed in the framework of isothermal and small deformation to describe the nonlinear and time‐dependent deformation behaviors of polymers, e.g., ratchetting, creep, and stress relaxation. The model is proposed on the base of a one‐dimensional rheological model with several springs and dashpot elements. The strain is divided into viscoelastic and viscoplastic parts, and the stress is also decomposed into two components. Each stress component is further divided into elastic and viscoelastic sub‐components. The viscoelasticity is described by introducing pseudo potentials, and the ratchetting is considered by the viscoplastic flow which is derived by the codirectionality hypotheses. The capability of the proposed model to describe the nonlinear and time‐dependent deformation of polymers is then verified by comparing the simulations with the corresponding experimental results of polycarbonate (PC) polymer. It is shown that the nonlinear and time‐dependent stress–strain responses of the PC can be reasonably predicted by the proposed model. POLYM. ENG. SCI., 56:1375–1381, 2016. © 2016 Society of Plastics Engineers  相似文献   

14.
Polycarbonate (PC) sheet is a promising material for facile patterning to induce hydrophobic self‐cleaning and dust repelling properties for photovoltaic panels’ protection. An investigation to texture PC sheet surfaces to develop a self‐cleaning structure using solvent induced‐crystallization is carried out using acetone. Acetone is applied in both liquid and vapor states to generate a hierarchically structured surface that would improve its contacts angle and therefore improve hydrophobicity. The surface texture is investigated and characterized using atomic force microscopy, contact angle technique (Goniometer), optical microscopy, ultraviolet‐visible spectroscopy (UV–vis) and Fourier transform infrared spectroscopy. The findings revealed that the liquid acetone‐induced crystallization of PC surface leads to a hierarchal and hydrophobic surface with an average contact angle of 135° and average transmittance <2%. However, the acetone vapor induced‐crystallization results in a slightly hydrophilic hierarchal textured surface with high transmittance; in which case, average contact angle of 89° and average transmittance of 69% are achieved. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43074.  相似文献   

15.
J. Richeton  L. Daridon  Y. Rémond 《Polymer》2005,46(16):6035-6043
The mechanical response of solid amorphous polymers is strongly dependent on the temperature and strain rate. More specifically, the yield stress increases dramatically for the low temperatures as well as for the high strain rates. To describe this behavior, we propose a new formulation of the cooperative model of Fotheringham and Cherry where the final mathematical form of the model is derived according to the strain rate/temperature superposition principle of the yield stress. According to our development, the yield behavior can be correlated to the secondary relaxation and we propose an extension of the model to temperatures above the glass transition temperature. For a wide range of temperatures and strain rates (including the impact strain rates), the predicted compressive yield stresses obtained for the polycarbonate (PC) and the polymethylmethacrylate (PMMA) are in excellent agreement with the experimental data found in the literature.  相似文献   

16.
This paper investigated the dynamic behavior of basalt fiber reinforced concrete (BFRC) after elevated temperatures by using a 100‐mm‐diameter split Hopkinson pressure bar apparatus. Changes in weight and ultrasonic pulse velocity (UPV) were also studied. The results indicate that the weight losses of BFRC before cooling increase with temperature, while a reduction in weight loss value is observed after water cooling. The UPV values of BFRC decrease constantly as temperature increases, and the measured velocities under the same temperature increase with fiber content as temperature exceeds 200 °C. For a given temperature, the strain rate, dynamic strength, critical strain, and impact toughness of BFRC increase with impact velocity. For a given impact velocity, the increasing temperature generally leads to an increase in strain rate and critical strain and results in a decrease in dynamic strength and impact toughness except in the case of 200 °C. At 200 °C, however, a marginal reduction, even an improvement in dynamic strength is observed, and the impact toughness initially decreases, then increases with loading rate when compared with that at room temperature. Basalt fiber is effective in improving the strength performance, deformation capacity, and energy absorption property of concrete after high temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Absorption of picoliter (pL) droplets into porous substrates is studied experimentally and numerically. In the case of pL droplets, major phenomena involved in the interaction between droplet and porous media develop at different time scales: spreading and wetting at microseconds, absorption and wicking at milliseconds, and evaporation at seconds. Therefore, one can decouple these processes to minimize the complexity of the study. A high‐speed imaging system capable of 1 million frames per second is used to visualize individual droplets impacting, spreading, and imbibing on substrates. To simulate droplet dynamics, the governing equations for flow outside and inside porous media are proposed and solved using an in‐house developed computational fluid dynamics solver. The simulation results are in good agreement with the experimental data. The effect of drop impact velocity and fluid properties on final dot shape in the porous substrates is investigated through a series of parametric numerical studies. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1690–1703, 2017  相似文献   

18.
《Polymer Composites》2017,38(11):2536-2543
The effects of fiber hybridization on damage behavior of hybrid glass/carbon composites under high‐velocity impact were investigated. The Hashin damage model is adopted to model the damage initiation of composites, and the bilinear form of damage evolution law based on the effective displacement is employed. The numerical results show a reasonable agreement with the experimental data. The residual velocity of impact projectile is approximately shown a linearly decreasing trend with the increasing of the thickness of glass fabric ply. As the proportion of glass fabric ply in the hybrid laminates increases, the impact resistance of laminates increased gradually. POLYM. COMPOS., 38:2536–2543, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
A one‐dimensional steady‐state two‐fluid model has been developed to demonstrate the drying kinetics in the vertical up‐flow gas‐solid system. The model takes into account mass, momentum, and heat transfer between the continuous and dispersed phases. A set of non‐linear differential equations have been solved numerically for the velocity, moisture content, and temperature of both the continuous and dispersed phases along the dryer length. The effect of operating parameters on drying kinetics has been critically examined and the model simulations are compared with the data reported in the literature.  相似文献   

20.
A constitutive model is presented for large strain deformation of polycarbonate (PC) at high strain rates (above 102 s?1). The proposed model considers the primary process (α) and the two secondary rate‐activated processes (β and γ). It is shown that the secondary transitions in the material affect the yield and post yield behavior of the material at high strain rates. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine. The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and DSR (Decompose/Shift/Reconstruct) method. These are employed to gain understanding of the material transitions, and to further the linkages between material viscoelastic, yield, and stress–strain behavior. Comparison of model predictions with experimental data demonstrates the ability of model to capture the characteristic features of stress–strain curve of the material such as initial linear elasticity, global yield, strain softening, and strain hardening at very high strain rates (up to 10,000 s?1). POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号