首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Rheological and morphological properties of melt processed poly(ethylene terephthalate) (PET)/polypropylene (PP) blends are presented. Two types of compatibilizer namely, PP‐g‐MA <MA= maleic anhydtide> and Elvaloy PTW, an n‐butyl acrylate glycidyl methacrylate ethylene terpolymers, were incorporated at different levels to the PET/PP blend system. Scanning electron microscopy revealed that the dispersed particle sizes were smaller in PET‐rich blends than PP‐rich blends. With increasing compatibilizer level, the refinement of morphology was observed in both the systems. However, the blends compatibilized with PTW showed a more refined (smaller) particle size, and at high PTW content (10 wt%), the morphology changed towards monophasic. The significant changes in morphology were attributed to the highly reactive nature of PTW. Investigation of rheological properties revealed that the viscosity of the PET/PP blends followed typical trends based on mixing rule, which calculates the properties of blends based on a linear average. Incorporation of PP‐g‐MA into the blends resulted in a negative deviation in the viscosity of the system with respect to that of the neat blend. With increasing PP‐g‐MA level, the deviation became more pronounced. Although incorporation of the compatibilizer into the PET/PP blends refined the morphology, it led to a drastic drop of viscosity, which could be attributed to inherently lower molecular weight of the compatibilizer. In the case of the blends compatibilized by PTW, a strong positive deviation in rheological properties was observed that confirmed the stronger interaction between the blend components due to reactive compatibilization process, which led to the more refined morphology in this series of blends. J. VINYL ADDIT. TECHNOL., 19:25–30, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

3.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

4.
Polypropylene (PP) and acrylonitrile–butadiene–styrene (ABS) blends were prepared by a melt extrusion process. PP‐g‐acrylic acid was used as a compatibilizer. Blends with various compositions of PP, compatibilizer, and ABS were prepared and studied for morphological and mechanical properties. PP‐rich ternary blends showed good morphological and mechanical properties. The use of 5 wt % PP‐g‐acrylic acid as a compatibilizer resulted in a fine and homogeneous dispersion of the ABS phase in the PP phase. The experimental data of the tensile modulus showed good agreement in PP‐rich compositions with that generated from Kerner's model with perfect adhesion. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1731–1741, 2001  相似文献   

5.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

6.
This paper deals with (maleic anhydride)‐grafted polypropylene (MAH‐g‐PP) and wood flour reinforcement and their effects on the dynamic, mechanical, morphological, and rheological properties of waste polypropylene (PP) composites. MAH‐g‐PP was used as a compatibilizer to improve the physical interaction between the filler and matrix. The composites were prepared by using a twin‐screw extruder followed by injection molding. Thermal stability and mechanical properties of the compatibilized system increased as compared to their values for the uncompatibilized system. Also, nearly 60% and 30% loss was found for mechanical properties and weight loss, respectively, in a biodegradability study. J. VINYL ADDIT. TECHNOL., 20:24–30, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Side‐chain liquid crystalline ionomer (SLCI) containing sulfonic acid groups with a polymethylhydrosiloxane main‐chain was used in the blends of polypropylene (PP) and polybutylene terephthalate (PBT) as a compatibilizer. The crystalline behavior, morphological, and mechanical properties of the blends were investigated in detail by differential scanning calorimetry (DSC), polarizing optical microscope (POM), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Revealed by the shift of Tm in DSC thermogram and the shift of the absorbed peak in FTIR spectra, specific interaction led to stronger interfacial adhesion between these phases, which resulted in much finer dispersion of the minor PBT phase in PP matrix. The SLCI containing sulfonate acid groups acted as physical crosslinking agent along the interface, which compatibilized PP/PBT blends. The mechanical property of the blends including 4 wt % SLCI contents was better than that of other SLCI contents in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Ternary blends of polypropylene (PP), a polypropylene‐grafted acrylic acid copolymer (PP‐g‐AA), and an ethylene–acrylic acid copolymer (EAA) were prepared by melt blending. The surfaces of films with different contents of these three components were characterized with contact‐angle measurements. Scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis were used to characterize the microstructure, melting and crystalline behavior, and thermal stability of the blends. The contact angles of the PP/PP‐g‐AA blends decreased monotonically with increasing PP‐g‐AA content. With the incorporation of EAA, the contact angles of the PP/PP‐g‐AA/EAA ternary blends decreased with increasing EAA content. When the concentration of EAA was higher than 15 wt %, the contact angles of the ternary blends began to increase. Scanning electron microscopy observations confirmed that PP‐g‐AA acted as a compatibilizer and improved the compatibility between PP and EAA in the ternary blends. Differential scanning calorimetry analysis suggested that acrylic acid moieties could act as nucleating agents for PP in the polymer blends. Thermogravimetric analysis and differential thermogravimetry confirmed the optimal blend ratio for the PP/PP‐g‐AA/EAA ternary blends was 70/15/15. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 436–442, 2006  相似文献   

12.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

13.
In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride‐grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42100.  相似文献   

14.
This work investigated the deformation and fracture behavior of polypropylene–ethylene vinyl alcohol (PP/EVOH) blends compatibilized with ionomer Zn2+. Uniaxial tensile tests and quasistatic fracture experiments were performed for neat PP and for 10 and 20 wt % EVOH blends with different ionomer contents. The addition of EVOH copolymer to PP led to an increase in the Young's modulus whereas the yield strength was decreased with the EVOH content as a consequence of the higher stiffness of EVOH and the poor interfacial adhesion between PP and EVOH, respectively. Furthermore, the incorporation of EVOH into PP promoted stable crack growth. Neat PP displayed nonlinear load‐displacement behavior with some amount of slow crack growth preceding unstable brittle fracture, whereas most PP/EVOH blends exhibited “pseudostable” fracture characterized by slow crack growth that could not be externally controlled. All blends exhibited lower resistance to crack initiation than PP but the fracture propagation resistance was significantly improved. For 10 wt % EVOH blends, the resistance to crack initiation was roughly constant with the ionomer content up to 5%, then it increased with the further addition of compatibilizer. Conversely, for 20 wt % EVOH blends, the resistance to crack initiation appeared to be independent of the ionomer content. The better resistance to crack initiation exhibited by the 10 wt % EVOH blends could be attributed to a higher level of compatibilization in these blends. By contrast, 20 wt % EVOH blends with ≤2% ionomer content showed completely stable crack growth. In addition, JR curves and valid plane strain fracture toughness values for these blends could also be determined. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1271–1279, 2005  相似文献   

15.
The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB) or fibers (GF) was investigated. The systems studied were based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semi‐crystalline highly polar copolymer. The ternary systems studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfacial properties was done using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. Both glass fillers increased the dynamic modulus and decreased the damping of the neat polymers and of their binary blends, especially in the rubbery region. GF has a more profound effect on both the modulus and the damping. Glass surface treatments and compatibilization have only a marginal effect on the dynamic mechanical behavior of the ternary blends. Yet, compatibilization shifted the polymers' TgS to higher temperatures. Both glass fillers increased the elastic modulus of the binary blends, where GF performed better than GB as a reinforcing agent. GF slightly increased the strength of the binary blends while, GB reduced it. Both fillers reduced the ductility of the binary blends. The blends' mechanical properties were related to the morphology and their components' crystallinity. The compatibilizer increases both stiffness and strength and reduces deformability.  相似文献   

16.
Isocyanate‐ and amine‐functionalized polypropylene (PP) and polystyrene (PS) were prepared through grafting and copolymerization method. These compounds are used as precursors for PP‐graft‐PS (PP‐g‐PS) copolymers and reacted at the matrix interface of PP/PS blends. Functionalized polymer structures were characterized by 1H NMR and FTIR spectroscopy. The effects of the synthesized compatibilizer on the rheological and morphological behavior of PP/PS blends were investigated systematically. Results showed that the functional polymer was successfully synthesized, and the additional two different compatibilizer systems dramatically decreased the size of the dispersed phase domains in PP/PS blends. Compared with the uncompatibilized blends, compatibilized blends exhibited a slightly higher crystallization temperature because the melting points of the blend components were not evidently affected by the addition of compatibilizer, as revealed by differential scanning calorimetry. The compatibilizer effect on the PP/PS blends was reflected through rheological property and dynamic mechanical analysis. POLYM. ENG. SCI., 55:614–623, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
This study examined the effect of three compatibilizers, namely, a hybrid compatibilizer composed of polypropylene‐maleic anhydride (PP‐g‐MAH) and polyethylene‐glycidyl methacrylate (PE‐g‐GMA), a single compatibilizer composed of PP‐g‐MAH, and a single compatibilizer composed of PE‐g‐GMA, on the mechanical, morphological, and rheological properties of a ternary blend of polypropylene (PP), poly(lactic acid; PLA), and a toughening modifier. The results of tensile strength, flexural strength, and impact strength tests for the ternary blends before and after hydrolysis, revealed that the ternary blend with a hybrid compatibilizer content of 3 phr exhibited better material properties than the blend containing a single compatibilizer. In the weighted relaxation spectra of the ternary blend using the Palierne emulsion model, the ternary blend containing the hybrid compatibilizer, exhibited only one relaxation spectrum peak at ∼ 0.16 s. This result suggests that the ternary blend with the hybrid compatibilizer exhibits uncharacteristic morphological properties, that is, a single‐phase microstructure. The above results suggest that the hybrid mixture is an effective compatibilizer for the ternary blend of PP, PLA, and a toughening modifier. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The effect of interface characteristics on the properties of three‐component polymer blends comprising PP/EVOH/mica and PP/EVOH/glass beads (GB) was investigated (polypropylene‐PP, ethylene‐vinylalcohol‐EVOH). The systems selected are based on the binary PP/EVOH immiscible blend representing a semi‐crystalline apolar polymer (PP) and a semi‐crystalline highly polar copolymer (EVOH), where PP serves as the matrix. A series of the binary and three‐component blends with varying compositions was chosen to study the effect of the molding procedure, i.e. compression versus injection molding. The structures observed by SEM analysis consisted of the filler particles engulfed by the EVOH phase, with some of the minor EVOH component dispersed within the PP matrix. The effects of silane treatment (GB/EVOH interface) and compatibilization, using a maleated‐PP compatibilizer (PP/EVOH interface), were studied in relation to the generated structured and properties. The compatibilizer was added in a unique procedure by which the encapsulated GB/EVOH structures were preserved. The characterization methods used included morphology by Scanning Electron Microscopy, thermal properties and crystallization behavior by Differential Scanning Calorimetry, mechanical properties by tensile testing, and dynamic characteristics by Dynamic Mechanical Thermal Analysis. The work has shown that structure‐performance relationships in the three‐component blends can be varied and controlled.  相似文献   

19.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

20.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号