首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.  相似文献   

2.
Measuring the fiber lengths of the broken pieces and estimating the mean tensile strength from the length just before the final fragment length in tension, efforts were made to estimate the axial compressive strengths of carbon fibers when the tensile strength varies with the length. The estimated compressive strength of carbon fibers decreases with increasing temperature. This decrease in compressive strength may be accounted for by a decrease in the radial compressive force owing to a decrease in the residual thermal stress and a decrease in Young's modulus of the resin matrix. There is a linear relationship between the estimated compressive strength and radial compressing force in the temperature range from room temperature to 80°C. The real compressive strength of the fibers, determined by extrapolating this straight line until the radial compressing force is zero, is about 20% higher than the compressive strength estimated by assuming that the tensile strength is uniform. It is approximately 10–50% of tensile strength. A linear relationship between the fiber axial compressive strength and compressive strength of the unidirectional composites is found. The experimental values agree with the values calculated by the rule of mixtures.  相似文献   

3.
用韦氏理论评价碳纤维抗拉强度的分散性   总被引:7,自引:0,他引:7  
碳纤维抗拉强度受控于各类缺陷,缺陷随机分布,使其抗拉强度呈现出多分散性。分散性可用韦氏(Weibull)理论予以评价。本文采用韦氏理论及方法处理实验数据,计算出韦氏模数m,并阐述m与力学性能之间的关系。  相似文献   

4.
The poor interlaminar properties restrict the application of carbon fiber reinforced polymer (CFRP) composites. In this work, a novel method for fabricating a graded interface structure is developed to improve the through-thickness thermal conductivity of CFRP composites. High-strength graphene nano-plates (GnP) and phenolic resin (PF) were selected to deposit on the surface of carbon fiber to design a novel CF/Epoxy laminates, where a simultaneous improvement of interlaminar shear strength (ILSS) and through-thickness thermal conductivity was observed. With addition of 1 wt % of GnP-PF in CF, 37.04% increase of the ILSS, and 16.67% enhancement of thermal conductivity compared to the original CFRP. The mechanism for improvement of both ILSS and thermal conductivity was studied by scanning electron microscopy and nano-indentation, where a better interface formed by GnP-PF has been clearly observed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47061.  相似文献   

5.
The effect of adhesive thickness on tensile and shear strength of a polyimide adhesive has been investigated. Tensile and shear tests were carried out using butt and single lap joints. Commercially available polyimide (Skybond 703) was used as adhesive and aluminum alloy (5052-H34) was used as adherends. The tensile strength of the butt joints decreased with increasing adhesive thickness. In contrast, adhesive thickness did not seem to affect the shear strength of single lap joints. The fabricated joints using the polyimide adhesive failed in an interfacial manner regardless of adhesive thickness. The linear elastic stress analysis using a finite element method (FEM) indicates that the normal stress concentrated at the interface between the adherend and the adhesive. The FEM analysis considering the interfacial stress well explains the effect of adhesive thickness on the joint strength.  相似文献   

6.
The nano‐scale and micro‐scale inhomogeneity of polyacrylonitrile (PAN) spinning dopes obtained from dynamic light scattering (DLS) experiment is correlated with the tensile strength of the resulting carbon fiber. The nanoscale inhomogeneity was estimated by calculating the diffusion coefficients from the slow relaxation mode of polymer solutions in DLS. The nanoscale inhomogeneity in the spinning dopes was found to be in the range of 1–45 nm. We also demonstrate mean of the count rate (MCR) obtained from DLS of PAN solution as a tool to detect the microscale inhomogeneity in the spinning dope for the first time. The MCR of spinning dopes varied from ~10.0 to 77.5 kcps (kilo‐counts per second). The tensile strength of carbon fibers from the precursor fiber spun from the spinning dopes in this study varied from 3 to 5.2 GPa. Correlation studies show that the microscale inhomogeneity in the spinning dope was a major contributor to the decrease in the tensile strength of carbon fibers in the range of 3–4.5 GPa. Contaminants causing microscale inhomogeneity in PAN powder were removed by using micelles, reverse micelles and frothing. The surfactant treated PAN polymer was characterized using a fourier transform infrared spectroscope, differential scanning calorimeter, and thermal gravimetic analyzer to demonstrate complete removal of surfactants. POLYM. ENG. SCI., 59:478–482, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
Carbon fiber was sized by a thermoplastic polymer solution mixed with a compatible amine monomer. The effect of sizing agent on tensile strength was studied by single fiber strength testing. Interfacial properties of re‐sized carbon fiber/epoxy composite were investigated, with special emphasis on the improvement in both interfacial shear strength and interfacial fracture toughness. The interfacial fracture toughness of composites was characterized by calculating the effective interphase fracture energy rate through the information obtained from the force–displacement curve in the micro‐bond test. Fracture topography of micro‐bond specimen was observed to discuss the interfacial fracture mechanism. POLYM. COMPOS., 35:482–488, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Adhesion in composite materials is often quantified using the single fiber fragmentation (SFF) test. While this method is believed to provide accurate values for the fiber–matrix interfacial shear strength (IFSS), these may not accurately reflect the macroscopic mechanical properties of specimens consisting of tows of thousands of tightly spaced fibers embedded in a resin matrix. In these types of specimens, adhesion may be mitigated by fiber twisting and misalignment, differences in the resin structure in the confined spaces between the fibers and, most importantly, by any incompleteness of the fiber wetting by the resin. The present work implements fiber band fragmentation (FBF) testing to obtain effective interfacial shear strengths, whose values reflect the importance of these factors. The fiber fragmentation in these specimens is tracked through the counting and sorting of acoustic emission (AE) events occurring during the tensile testing of the specimen and yields the average critical fiber fragment length. AE results, in conjunction with stress-strain data, show that fiber breakage events occur at acoustic wavelet amplitudes substantially greater than those generated by fiber/matrix debonding. Kelly–Tyson analysis is applied, using the measured critical fiber fragment length together with known values for the fiber diameter and tensile strength to yield the effective IFSS. FBF tests are performed on carbon fiber/poly(vinyl butyral) (PVB) dog-bone fiber-bundle systems, and effective IFSS values substantially lower than those typically reported for the single fiber fragmentation testing of similar systems are obtained, suggesting the importance of multi-fiber effects and incomplete fiber wetting.  相似文献   

9.
Dependence of the tensile strength of resulting carbon fiber (CF) on the preparation technologies during preoxidation and carbonization were studied systematically by a series of pilot experiments. The proper preoxidation time, preoxidation temperature, and preoxidation stretching ratio are the base of preparing high‐quality CF. During precarbonization, the enhancement of the precarbonization temperature and the application of the precarbonization stretching are helpful to increase the tensile strength of CF, but the stretching ratio should be controlled carefully by on‐line tension values. The tensile strength of CF increases quickly below 1200°C and then slowly above 1200°C as the carbonization temperature raises. Even though during carbonization, a proper relaxation should also be explored in order to prepare optimal CF. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Carbon fiber/Fe-based soft magnetic alloys coaxial composites have been prepared and the enhanced giant magnetoimpedance effect has been investigated by applying a tensile stress. Carbon fibers as the inner core are commercially available, the outer layers respectively are Fe, Ni, FeNi and FeCo alloys, which are fabricated by electrochemical deposition. The composite with Fe80Ni20 alloy shows the best static magnetic property and giant magnetoimpedance ratio (about 26%) compared to other metals or alloys without tensile stress at 70 MHz. When applying a tensile stress, the giant magnetoimpedance ratios of all samples show large improvements. With the increase of the tensile stress, the ratio increases to the maximum value (about 200%) when the tensile stress is 350 MPa, which is about eightfold over the original sample and higher than traditional materials.  相似文献   

11.
以竹浆粕为原料,N-甲基吗啉-N-氧化物(NMMO)水溶液为溶剂,没食子酸正丙酯为抗氧剂,采用湿法纺丝工艺制备竹纤维,讨论了竹浆粕的聚合度、纺丝原液的竹纤维素含量以及抗氧化剂添加量等因素对竹纤维拉伸强度的影响,并通过场发射扫描电子显微镜(FE-SEM)对竹纤维的表面微观形貌进行观察。结果表明:在竹纤维素质量分数为11%~15%、竹浆粕聚合度为450~950、抗氧剂质量分数0~0.5%的条件下,随着竹纤维素含量的增加、竹浆粕聚合度的增大和抗氧化剂添加量的增加,竹纤维的拉伸强度均呈上升趋势;FE-SEM观察发现竹纤维原纤化明显,表面出现明显的表面缺陷。  相似文献   

12.
Composite materials can be enhanced by grafting a secondary material to a functional group on the surface of the reinforcing fibers to improve thermal, electrical or mechanical properties. Grafting secondary materials onto carbon fibers is often limited by the low reactivity of graphitic carbon and there is strong demand to create novel grafting methods with versatile functional groups. One desirable functional group is a carboxylic acid, which strongly interacts with many organic and inorganic materials. In this work, the surface of carbon fibers is functionalized by a reaction of naturally existing surface hydroxyl groups with isopropylidene malonate to graft terminal malonic esters, effectively creating a carboxyl functionalized surface. The reaction does not employ pre-oxidation to generate functional groups prior to grafting and is shown to preserve the tensile strength and morphology of the fiber. The surface functionalization is quantified by X-ray photoelectron spectroscopy, which shows that the relative surface coverage by carboxylic acid groups is increased from an initial 5.2% up to 9.2%. The effects of solvent, temperature, concentration and reaction time on the quantity of surface carboxylic acid groups are studied. This functionalization opens up new opportunities as a precursor reaction for further grafting reactions without sacrificing fiber strength.  相似文献   

13.
The present investigation aims to optimise the process parameters of DC glow discharge treatment through air in terms of discharge power and time of exposure for attaining best adhesive joint of high-density polyethylene (HDPE) to mild steel. The as- received and DC glow discharge exposed HDPE surfaces have been characterised by energy dispersive spectra (EDS). It is observed that with increasing power level up to 13 W, tensile lap shear strength of adhesive (Araldite AY 105) joint of HDPE to mild steel increases and then decreases. At 13 W power level, joint strength increases up to 120 s of exposure and then decreases. At the optimised condition for the surface modification, the effect of two different adhesives Araldite AY 105 and Araldite 2011 on the strength of polymer to mild steel, polymer to polymer and mild steel to mild steel joints have been examined. It is observed that tensile lap shear strength of HDPE–HDPE joint and HDPE–mild steel joint does not change with the change of adhesive and this could be possible as initiation of fracture takes place from subsurface layer of the polymer. This is confirmed by studies under optical microscopy and EDS, which shows when the polymer has been modified by exposure under glow discharge the failure is observed to initiate from subsurface layer of the HDPE, then within the adhesive cohesively and thereafter in the mild steel to adhesive interface.  相似文献   

14.
碳纤维表面处理对层间剪切断裂形貌的影响   总被引:9,自引:0,他引:9  
用气相氧化法对碳纤维进行表面处理,可使碳纤维复合材料(CFRP)的层间剪切强度(ILSS)提高40%-76%,这归因于纤维表面增加了化学官能团和比表面积,同时,由于碳纤维(CF)与基体之间粘接得到改善,使单向(UD)-CFRP的剪切断裂形貌变为拉剪,这可用扫描电子显微镜(SEM)观察剪断形貌得到证实。  相似文献   

15.
对短纤维/热塑性弹性体复合材料的破坏机理进行了理论分析, 提出了短纤维/热塑性弹性体复合材料拉伸强度的理论预测方程, 并对短纤维/ 热塑性聚氨酯复合材料结构与性能的关系进行了试验研究,理论预测结果与试验结果吻合较好。  相似文献   

16.
Resin cross-flow during compression molding of unidirectional sheet molding compound composites, such as CSMC and XMC, may cause severe misorientation of the continuous fibers in the outer layers. The extent of fiber misorientation depends on the type of molding compound, the length of cross-flow, and the location of the charge in the mold. The tensile strength is reduced in the direction of cross-flow with decreasing mold surface coverage. However, since severe fiber misorientation is generally restricted to the outer layers, increasing the number of plies improves the tensile strength to the level observed with little or no misorientation.  相似文献   

17.
《Polymer Composites》2017,38(4):719-726
High‐shear mixing experiments using twin‐screw extruder were conducted to study the effect of shearing on carbon nanotube (CNT) dispersion in polyacrylonitrile (PAN) polymer solution. Different types of CNTs (few‐wall carbon nanotube and single‐wall carbon nanotube) were used to prepare composite solution at 0.5 wt% with respect to the PAN polymer through various preparation conditions. The resulting PAN/CNT composite solution was characterized using various techniques including dynamic light scattering, preparative ultracentrifuge method, optical microscopy, solution rheology, and high‐resolution transmission electron microscopy. With increasing the number of extrusion cycle, it was observed that the CNT bundle size was moderately reduced, while solution homogeneity and macroscopic CNT dispersion was significantly improved. POLYM. COMPOS., 38:719–726, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
19.
The mechanical performance of advanced composite materials depends to a large extent on the adhesion between the fiber and matrix. This is especially true for maximizing the strength of unidirectional composites in off-axis directions. The materials of interest in this study were PAN-based carbon fibers (XA and A4) used in combination with a thermoset (EPON 828 epoxy) and a thermoplastic (liquid crystal poymer) matrix. The effect of surface treatment and sizing were evaluated by measuring the short-beam shear (SBS) and transverse flexural (TF) tensile strengths of unidirectional composites. Results indicated that fiber surface treatment improves the shear and trasverse tensile strengths for both thermosetting and thermoplastic matrix/carbon fiber-reinforced unidirectional composites. A small additional improvement in strengths was observed as the result of sizing treated fibers for the epoxy composites. Scanning electron microscope photomicrographs were used to determine the location of composite failure, relative to the fiber-matrix interface. Finally, the epoxy composites SBS and TF strengths appear to be limited to the maximum transeverse tensile strength of the epoxy matrix, while the thermoplastic composite SBS and TF strengths are limited by the LCP matrix shear and transverse tensile strengths, respectively.  相似文献   

20.
In discontinuous fiber-reinforced composites, the shear strength at the fiber–matrix interface plays an important role in determining the reinforcing effect. In this paper, a method was devised to accurately determine this shear strength, taking the strength distribution of glass fiber into consideration. Calculated strength values based on the shear strenght obtained by the method were in better agreement with the experimental observations than those calculated by employing the shear strength obtained on the assumption that the fiber strength was uniform. The tensile strength of composites increases with increasing aspect ratio of the reinforcing fibers. This trend is almost the same regardless of the kind of matrix, the nature of interfacial treatment, and the environmental temperature. When composites are reinforced with random-planar orientation of short glass fibers of 1.5 times the mean critical fiber length, the tensile strength of composite reaches about 90% of the theoretical strength of composites reinforced with continuous glass fiber. Reinforcing with glass fibers 5 times the critical length, the tensile strength reaches about 97% of theoretical. However, from a practical point of view, it is adequate to reinforce with short fibers of 1.5–2.0 times the mean critical fiber lenght.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号