共查询到20条相似文献,搜索用时 15 毫秒
1.
The strain rate–dependent finite deformation behavior of three types of rubber under tension and compression are experimentally characterized using a Hopkinson bar. Based on the measured data, a frame‐independent incompressible visco‐hyperelastic constitutive equation is proposed to describe the tensile and compressive responses of rubber under high strain rates. The equation comprises two parts: a three‐parameter component based on an elastic strain energy potential, to characterize static hyperelastic behavior, and another with four parameters, developed from the BKZ model, to define rate sensitivity and strain history dependence. Established static and dynamic experimental techniques are employed to determine the seven parameters in the constitutive relationship. Comparison of predictions based on the proposed model with experiments shows that it is able to describe the visco‐hyperelastic behavior of rubber‐like materials under high strain rates. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 523–531, 2004 相似文献
2.
We successfully produced vapor‐grown carbon‐fiber (VGCF)‐incorporated polymer‐based functionally graded materials (FGMs) using a centrifugal method. Gradual VGCF incorporation within an epoxy resin effectively produced depth gradients in the fiber distribution, microstructure, mechanical, and electrical conductivities and microwave absorbing properties. This VGCF‐grading capability indicated that it is possible to tailor desired gradient filler content distributions by careful selection of the processing parameters to control variations in the property and microstructure precisely. The results confirmed that the volume content of VGCF in the epoxy substrate increased as a function of the normalized thickness along the centrifugal force direction, which caused a gradient. A uniform VGCF gradient in the composite can also be observed using field‐emission scanning electron microscopy. In the case of the electrical properties, for example, the volume resistance exhibited a depth‐graded distribution in the matrix as the electrical conductivity of the FGM nicely followed the grading direction; this is considered to be ideal for applications demanding an electrically conductive surface and an insulating core for FGMs. The results of microwave absorption behavior of FGMs indicate that the grading structure can lead to a graded absorption ability, which could be a better design for microwave absorption materials. The concept of FGMs bridges conventional materials and nanocomposites and will be effective for wider material applications. POLYM. COMPOS., 34:1774–1781, 2013. © 2013 Society of Plastics Engineers 相似文献
3.
In this work, we introduce the Seebeck effect in Ohm's law and Thomson heating effect in generalized Fourier's law, to the equations of the linear theory of electro‐magneto‐thermoviscoelasticity, allowing the second sound effects. A normal mode analysis is used. The resulting formulation is applied to a problem of a rotating thick plate subject to heat on parts of the upper and lower surfaces of the plate that varies exponentially with time. The exact formulas of temperature, displacement, stresses, electric field, magnetic field, and current density are obtained. The considered variables are presented graphically and discussions are made. Seebeck and Peltier effects on thermoelectric viscoelastic material are studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
4.
Functionally graded nano‐TiO2 epoxy matrix composites were successfully fabricated using a centrifugal method. In the preparation of the composite, the aggregation of nano‐TiO2 occurred during curing, which had a negative effect on the composite performance. To solve this problem, we introduced a silane coupling agent to modify the surface of the nano‐TiO2, thereby improving the performance and mechanical properties simultaneously. The modified nano‐TiO2 (s‐TiO2) had better dispersion in the epoxy resin, making it possible to produce depth gradients of the mechanical properties of functionally graded materials (FGMs). The s‐TiO2 was characterized with respect to functional groups, morphology, and chemical elements using transmission electron microscopy, X‐ray photoelectron spectroscopy, and Fourier‐transform infrared spectroscopy. The results show that a silane layer was successfully coated on the surface. Also, the gradients of the mechanical and permittivity properties of the FGM indicated that by modifying the surface of the nano‐filler, it is possible to fabricate nano‐filler‐reinforced epoxy matrix FGMs using a centrifugal method. POLYM. COMPOS., 35:557–563, 2014. © 2013 Society of Plastics Engineers 相似文献
5.
The fracture characterizations on mixed‐mode crack of functionally graded materials (FGMs) are investigated using digital speckle correlation method (DSCM). The stress intensity factors at mixed‐mode crack tip are obtained from digital speckle displacements fields. In combination with finite elements simulation results, the influences of gradient coefficients on fracture behavior of mixed‐mode cracks are analyzed. All the results show that the influence of gradient coefficients on fracture modes is not noticeable, and the stress intensity factor at the crack tip in graded materials are clearly influenced by the gradient coefficients, i.e., the stress intensity factors decrease with the increasing of gradient coefficients. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
6.
The ring‐shaped styrene‐butadiene rubbers (SBRs) test pieces ran on a rotating stainless‐steel ring using an abrasion tester to evaluate the changes in the mechanical properties, such as the tensile storage modulus and tan δ values, the modulus at 300% elongation, and the strength and extension ratio at the breaking point, after a mechanical aging process. The surface of the SBR test pieces and the formed rubber debris after the running experiment was investigated using scanning electron microscopy. A change in the crosslinking density of the SBRs and the analysis of the isolated free polymers showed the occurrence of bond scission of the copolymer chains. On the other hand, the mechanical properties of whole SBR samples showed only a small change during the mechanical aging test. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
This article reports the development and direct‐current (dc) conductivity behavior of copper‐powder‐filled‐epoxy graded composite. Copper‐powder‐filled‐epoxy composites with 10 wt % copper powder and epoxy resin were developed. dc conductivity measurements were performed on the graded composites with an electrometer in the temperature range of 28–146°C. The dc conductivity decreased with an increase in the distance in the direction of the centrifugal force, and this showed the formation of a graded structure. The dc conductivity increased as the copper powder content increased. Two‐phase conduction occurred in all the copper‐filled‐epoxy graded samples. The activation energy calculated with an Arrhenius equation for one sample was 0.88 eV, and this was mainly due to conduction electronic. Another sample had an activation energy of 1.33 eV. Three samples exhibited ionic conduction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
8.
Visco‐hyperelastic constitutive model for modeling the quasi‐static behavior of polyurethane foam in large deformation 下载免费PDF全文
Flexible polyurethane foam is widely used in numerous applications such as seats and mattresses, due to its low stiffness and its ability to absorb deformation energy. The main objective of this article is to model the quasi‐static mechanical behavior of three types of polyurethane foam in large deformation and to compare these three foams with three proposed models. The uniaxial compression/decompression tests at three different strain rates were performed. The test results show that the three foams present different plateau stresses, maximum stresses, and abilities to absorb energy. Moreover, polyurethane foam also presents a nonlinear hyperelastic behavior and a viscoelastic behavior in large deformation. Three visco‐hyperelastic models which include a hyperelastic component and a memory component are proposed to model these behaviors. Model parameters were identified using the experimental data and a proper identification method. These models were validated on these three types of foam with the aim to present comparison results. The comparison results show that Ogden's viscoelastic model best agrees with the experimental results. POLYM. ENG. SCI., 55:1795–1804, 2015. © 2014 Society of Plastics Engineers 相似文献
9.
Performance of air plasma sprayed (APS) thermal barrier coatings (TBCs) with multilayer and functionally graded topcoat were investigated in thermal shock conditions. Ceria-yttria stabilized zirconia (CSZ) and micro- and nano-structured yttria stabilized zirconia (YSZ and YSZ-N) were used to produce coating samples. The samples were classified into four families, namely single-layer, double-layer, triple-layer and functionally graded (FG). To measure thermal shock resistance, the heating/water quenching cycles were repeated 70 times and 30% destruction of the coating was considered its functionality limit. Thus, cycles did not continue for those coatings that were destroyed more than 30%. At the end of each cycle, the surface and edge damage were determined from the photos of samples. Furthermore, scanning electron microscope (SEM) images and energy-dispersive spectrometer (EDS) analysis of samples’ cross-section were taken before and after the test. After collecting the experimental data, effects of various factors on outputs were investigated. The results showed that YSZ-N single-layer coating and triple-layer with CSZ as a top layer, has less thermally grown oxide (TGO) thickness and best performance in thermal shock conditions. 相似文献
10.
A basic study on crystal structure and orientation behavior of transversely compressed ethylene‐1‐octene copolymer with different 1‐octene contents was described. All polymers were first melt spun under different spinline stress and subsequently transversely compressed. For the melt‐spun filaments, an orthorhombic crystal structure was found for all polymers, but a pseudo‐hexagonal mesophase was also found for polymers with the highest 1‐octene level (13.3 mol%). For the transversely compressed filaments, several reflection peaks from a monoclinic unit cell were found for polyethylene without octene. For those with higher octene levels, the reflection peaks from monoclinic became fainter and disappeared for the one with the highest 1‐octene level. After being transversely compressed, the (110) and (200) peaks of orthorhombic crystal structures became oriented along the meridian direction, which is the fiber axis direction. The reason for this appears to be that the compression deformation of the filament induces elongation along its width direction and shrinkage along its length and thickness direction, and in this change the polymer chain orients. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers 相似文献
11.
《Carbon》1964,2(2):121-126
Non-ohmic current—voltage characteristics of carbon black-loaded rubber vulcanizates are explained by tunnelling effects. In samples containing 40 pbw of HAF black in different dispersions, tunnelling parameters are found to depend on the degree of dispersion. In a second series the concentration of MT black varied between 10 and 50 pbw.The non-ohmic behavior of all these samples can be described by approximately the same equation, but tunnelling between impurities appears to predominate. A series of samples containing 50 pbw of six different blacks (MT, regal SRF, FEF, HAF, ISAF, SAF) appear to follow Ohm's law. 相似文献
12.
Wenbin Li Amir Armani Austin Martin Benjamin Kroehler Alexander Henderson Tieshu Huang Jeremy Watts Gregory Hilmas Ming Leu 《Journal of the European Ceramic Society》2021,41(3):2049-2057
The Ceramic On-Demand Extrusion (CODE) process has been recently proposed for additive manufacturing of dense, strong ceramic components via extrusion with uniform layered drying. This study focuses on enabling CODE to fabricate functionally graded ceramics. A controlled volumetric flowrate for each ceramic paste was used to achieve a gradient between alumina and zirconia. A dynamic mixer was built to mix constituent ceramic pastes homogeneously. Functionally graded alumina/zirconia samples were printed, sintered, and tested to examine the capability of CODE in fabricating functionally graded components. The desired and actual material compositions were compared using energy dispersive spectroscopy. Dimensions of sintered samples were evaluated to study the deformation of functionally graded components during drying and sintering. Vickers hardness was also measured at different locations, corresponding to different material compositions. Finally, a case study was conducted to demonstrate the capability of the proposed method to build functionally graded ceramics with complex geometries. 相似文献
13.
The stress‐relaxation behavior of wool fibers after a pretreatment with a chemical solution is particularly important for evaluating the efficiency of the pretreatment. In this study, three viscoelastic models, including the Maxwell, two Maxwell unit, and modified two Maxwell unit models, were established first. To verify the feasibility of the models, stress‐relaxation experiments for wool fibers were performed. The wool fibers were pretreated with a sodium bisulfite solution (1 and 3%) at various temperatures (293, 298, 303, 308, 313, and 318 K). Then, the experimental values were fitted to the three models to obtain the rate constants of relaxation. The activation energy of the wool fibers was calculated with the Arrhenius equation. The results showed that the modified two Maxwell unit model provided the best fit for the experimental data of the wool fibers. The stress‐relaxation process of the wool fibers could be divided into two stages, a rapid stage followed by a slow stage. The rapid relaxation of stress was attributed to the weak bonds in the wool fibers, and the following slow relaxation stage was attributed to strong bonds. The Arrhenius equation could describe the stress‐relaxation process of the wool fibers very well. Furthermore, the activation energy decreased in the presence of sodium bisulfite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Cu具有优良的性能,仅次于银的导电和导热性,容易塑性变形等,但铜的强度、硬度较低,耐腐蚀、耐氧化、耐磨性差等大大限制了其应用,要求既具有高导电、导热低温延展性,同时具有高强度、耐腐蚀、氧化等性能,Cu基功能梯度材料的出现满足了材料这种高导电率、高强度以及更高的性能要求,目前有Cu-Mo,Cu-WC等功能梯度材料,在导电导热性、等离子体材料等有广泛的应用。重点综述了Cu基功能梯度复合材料的各种制备方法、应用,并对其未来发展及前景进行了展望。 相似文献
15.
The development of a polymer based functionally graded material (FGM) of desired composition profile by the centrifugation technique requires control on centrifugation, size, shape, and concentration of suspended particles, time, viscosity variation of polymerizing fluid, etc. A simulation was conducted to observe the compositional variations with time at different places of FGM, using a modified terminal velocity equation for particle movement in polymerizing fluid. It was further modified for the particles having different sizes. The simulation demonstrated two graded‐composition profiles each one in low concentration region from where particles were moved to the other part of sample and second high concentration profile in which particles entered to increase the concentration. The third region situated between the two composition profiles was observed as that of uniform distribution of particles and the length of this region can be controlled by adjusting the size of the centrifuged sample. The simulation was compared with the experimental results of FGM having SiC particles in polysulphide epoxy resin. POLYM. ENG. SCI. 46:1660–1666, 2006. © 2006 Society of Plastics Engineers 相似文献
16.
Water‐swellable rubbers were prepared by dispersing the superabsorbent polymer particles, sodium polyacrylate particles, in natural rubber, and their water absorption properties were investigated. Sodium polyacrylate particles were synthesized using the inverse suspension polymerization technique, and their thermal and water absorption properties were characterized. The equilibrium water uptake in sodium polyacrylate particles was strongly dependent on both the salt concentration of aqueous media and crosslinking density of polymer. The dynamic and equilibrium water‐swelling behavior of the prepared rubbers were significantly affected by addition of carbon black, hydrophilic polymer, and coupling agent. Those effects were well explained by microphotographic morphologies obtained using a scanning electron microscope. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 115–121, 2001 相似文献
17.
S. A. R. Hashmi 《应用聚合物科学杂志》2006,99(6):3009-3017
The precise control on concentration profile of dispersion in functionally graded material (FGM) is essential for obtaining a desired material. A suitable simulation of parameters and an appropriate model that describes the motion of particles in the fluid can predict various aspects those are needed to produce FGM, by gravity sedimentation or centrifugation technique. Simulation was conducted to observe the changes in concentration profile, while using the following equations applicable to polymerizing fluid, and to determine the terminal velocities (Vm) of particles; Vm = {D2(ρs ? ρl)g*(1 ? ?s)4.65}/(18μ0e) for gravity sedimentation and Vm = {D2(ρs ? ρl)rω2(1 ? ?s)4.65}/(18μ0 e) for centrifugation, where D is the diameter of the spherical particle, ρs the density of solid particles, ρl the density of fluid, μ the viscosity of fluid, g* the acceleration due to gravity, ?s is the volume fraction of particles, and tc is the elapsed time of curing of thermosetting resin. b is a constant, r is the radius, and ω is the angular velocity. This simulation demonstrates that the time of centrifugation/sedimentation, particle size, distribution of particle size, and centrifugal/gravitational forces can be effectively utilized to attain a desired concentration profile in graded materials. Simulation also revealed that there exist the possibility of two graded profiles, namely low concentration profile and high concentration profile, in one sample of graded material, made either by centrifugation or sedimentation. Low concentration profile is more sensitive to particle size distribution as compared to high concentration profile. The present simulation method is also sensitive to concentration‐measuring methods. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006 相似文献
18.
Smilja Marković Čedomir Jovalekić Ljiljana Veselinović Slavko Mentus Dragan Uskoković 《Journal of the European Ceramic Society》2010,30(6):1427-1435
Barium titanate stannate (BTS) functionally graded materials (FGMs) with different tin/titanium concentration gradient were prepared by the powder-stacking method and uniaxially pressing process, followed by sintering. Impedance spectroscopy (IS) was used to determine the electrical characteristics of FGMs and ingredient BTS ceramics, as well as to distinguish the grain-interior and grain boundary resistivity of the ceramics. Activation energies of FGMs and ingredients were calculated. It has been established that for BTS ceramics the activation energy deduced from grain-interior conductivity (0.73–0.75 eV) is defined by chemical composition, while activation energy for grain boundary conductivity (1.07–1.25 eV) is influenced by microstructural development (density and average grain size). Furthermore, for FGMs, activation energy for grain-interior conductivity kept the intrinsic properties (0.74–0.78 eV) and did not depend on tin/titanium concentration gradient, while activation energy (1.03–1.29 eV) for grain boundary was determined by the microstructural gradient. No point dissipation was observed by IS, accordingly, no insulator interfaces (cracks and/or delamination) between graded layers were detected. 相似文献
19.
Conducting composites were prepared by melt mixing of ethylene–propylene–diene terpolymer (EPDM) or styrene‐butadiene rubber (SBR) and 35 wt % of carbon black (CB). Stability of electrical properties of rubber/CB composites during cyclic thermal treatment was examined and electrical conductivity was measured in situ. Significant increase of the conductivity was observed already after the first heating–cooling cycle to 85°C for both composites. The increase of conductivity of EPDM/35% CB and SBR/35% CB composites continued when cyclic heating‐cooling was extended to 105°C and 125°C. This effect can be explained by reorganization of conducting paths during the thermal treatment to the more conducting network. EPDM/35% CB and SBR/35% CB composites exhibited very good stability of electrical conductivity during storage at ambient conditions. The electrical conductivity of fresh prepared EPDM/35% CB composite was 1.7 × 10−2 S cm−1, and slightly lower conductivity value 1.1 × 10−2 S cm−1 was measured for SBR/35% CB. The values did not significantly change after three years storage. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
20.
《Carbon》1971,9(1):19-37
Comparative dimensional data from irradiation experiments that included both high temperature isotropic (HTI) and low temperature isotropie (LTI) carbons show that at high fluences the volume expansion and accelerations in the dimensional change rates are considerably more pronounced for HTI carbons than for LTI carbons. Alloying LTI carbons with up to 15 wt-% silicon enhances the dimensional stability slightly at ~ 600°C but has no effect on the behavior in irradiations at higher temperatures. For HTI carbons the effects of the alloying additions are more pronounced. In neither case, however, are the improvements thought to be of practical importance. Data from both multiple irradiations at different temperatures and irradiations in which the temperatures were programmed down during the course of the irradiation show that prior irradiation at high temperature markedly enhances the dimensional changes that occur in subsequent irradiations at lower temperature. The implications of these findings to reactor design are discussed. 相似文献