首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
The conventional vibration welding process of polyamide 66 only has a continuous and steady melt flow during the quasi‐steady phase. The process and resulting welds have been thoroughly investigated. Radiation cross‐linking of polyamide 66 with electron beams alters the material's characteristics. Consequently, the resulting energy balance during vibration welding changes and the squeeze flow is impeded. Additionally, this causes the cross‐linking to attain a residual stiffness above the crystallite melting temperature, thereby influencing the characteristics of the vibration welding process. Further, higher weld temperatures and a change in meltdown behavior can be observed. This leads to a varied relationship amongst the process, structure, and properties for vibration welding cross‐linked polyamide. Hence, weld strengths up to the value of the base material strength are possible. The scope of this article is to investigate the influence of radiation cross‐linking on the material characteristics and, by extension, the resulting processing and welding characteristics. Calorimetric, chemical, rheological, mechanical, and optical investigations serve to highlight the influence of radiation cross‐linking on the vibration welding process of polyamide 66. POLYM. ENG. SCI., 55:2493–2499, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
《Polymer Composites》2017,38(3):489-495
A conventional vibration welding process of fiber‐reinforced Polyamide 66 is characterized by a continuous melt flow in the quasi‐steady phase. This squeeze flow leads to a disadvantageous fiber reorientation in the weld zone. The fibers are oriented parallel to the melt flow and thus perpendicular to the common stress direction. This causes relatively low weld strength compared to the strength of the base material. Radiation crosslinking fiber‐reinforced Polyamide 66 with electron beams influences the material characteristics. As a consequence, the resulting energy balance during vibration welding is changed and the squeeze flow is impeded, thus averting the fiber reorientation in the weld seam. The scope of this article is to demonstrate the influence of radiation crosslinking on fiber orientation in vibration welds. Mechanical, calorimetric, rheological, scanning electron microscope, and light microscope investigations serve to highlight the influence of radiation crosslinking on the vibration welds of fiber‐reinforced Polyamide 66. POLYM. COMPOS., 38:489–495, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
Under the right conditions, high strengths are shown to be achievable in vibration welded polycarbonate to polyetherimide Joints. While welding of thermoplastic interfaces of the same material can be understood in terms of interchain diffusion at elevated temperatures, this mechanism is severely limited in the case of dissimilar materials. Scanning electron microscopy is used to show that part of the bond strength in such dissimilar materials results from mechanical interlocking of the two polymers, which is caused by viscous mixing. The effects of the weld parameters on the weld morphology are considered in detail.  相似文献   

4.
Thermoplastics reinforced with random glass mat have high strength and stiffness; the fibers dominate the mechanical behavior of these composites. The results of this investigation have shown that fibers are ineffective for reinforcing hot-tool and vibration welded butt welds. The maximum weld strengths attained with GMT are comparable to the strengths of good welds of the unfilled material. The optimum hot-tool welding parameters for the reinforced materials are different from those for the unfilled material. Unfilled polypropylene is easier to weld than unfilled polyamide. This characteristic is also true of the reinforced materials. In vibration welding, high welding pressures and high amplitudes result in lower mechanical properties. The optimum penetration depends on the fiber content of the bulk material. This penetration dependence is different from that for unfilled thermoplastic, for which the mechanical properties are independent of the penetration once a steady state has been attained.  相似文献   

5.
Many of the acclaimed advances in medical sciences have been possible because of the improvements in material sciences, particularly plastic. Radio frequency (RF) sealing of plastics has adopted an increasingly important role as a means of manufacturing medical devices. A high intensity radio signal is used to impart increased molecular vibration in two similar or dissimilar polymers. RF sealing is one of the methods for fabrication that allows the designer to seal or connect different types of plastics. This study addresses the effectiveness of this welding method applied to various commercially significant medical grade polymers with emphasis on PVC of varying hardness. The study compares measured weld strength and weld quality (inspected microscopically) at ambient and elevated temperatures. Also, selected samples of polymeric compounds were exposed after RF welding to gamma radiation, a method of medical device sterilization, in order to study the effects on the weld strength and color shift in the weld area. Of prime interest is the determination of optimum welding parameters for various constructions of plastic compounds.  相似文献   

6.
The thickness of the melt film and the temperature profiles within the melt film in the weld zone are key process variables governing the development of weld‐zone microstructures and the resulting development of weld strengths, during vibration welding of thermoplastics. The mathematical model described in this report is aimed at investigating the role of the rheology of the melt—specifically the magnitude and shear‐rate as well as temperature dependence of the melt viscosity—in governing the process variables such as the molten film thickness and the viscosities, stresses, and the temperatures within the melt film during vibration welding. The analysis is focused on the steady‐state penetration phase (phase III) of vibration welding. The coupled steady‐state momentum balance and heat transfer within the melt film, formulated using the Cross‐WLF (Williams‐Landel‐Ferry) relationship for viscosity, are solved in an iterative finite element framework. The model has been implemented for two different polymers displaying significant differences in viscosities and shear thinning behaviors. An attempt has been made to correlate the trends in the estimated melt film variables with the experimentally measured weld quality. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
The weldabilities of polyamide 6 (PA‐6), polyamide 6,6 (PA‐6,6), 33 wt% glass‐filled PA‐6,6 (33‐GF‐PA‐6,6), and amorphous polyamide (PA‐A) are assessed through 120 Hz vibration welds. Weld strengths equal to those of the base resins can easily be obtained in vibration welds of both undried and dried PA‐6 and PA‐6,6. Relative weld strengths in the range of 54–57% are demonstrated for 120 Hz welds of 33‐GF‐PA‐6.6. Relative weld strengths in the range of 90–97% are demonstrated for dried PA‐A. The highest relative weld strengths obtained in hot‐tool welds of undried and dried PA‐6,6 are only 57% and 54% respectively.  相似文献   

8.
Vibration welding of dissimilar nylons is a promising technique for assembling complex components made of different polymers. The effects of pressure and meltdown on the tensile strength of nylon 6 (PA 6) to nylon 66 (PA 66) vibration welds were determined in this study using an experimental design and three weld geometries. Weld strengths were generally improved by increasing meltdown and decreasing weld pressure. The weld strength was also shown to vary with the position of the lower melting material for T‐welds. Using differential scanning calorimentry and fracture surface analyses, it is concluded that for all geometries, higher weld strengths can be achieved when both materials are melted. Polym. Eng. Sci. 44:760–771, 2004. © 2004 Society of Plastics Engineers.  相似文献   

9.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004  相似文献   

10.
This study investigated the effect of dynamic crosslinking of polyamide 6,12 and random copolymers of ethylene and vinyl acetate blends (PA6,12/EVA) on the morphology, crystallinity, and dynamic mechanical properties. The crosslinking agent was dicumyl peroxide (DCP), and the blends were processed in a torque rheometer. The morphology depended on the DCP content, and all blends exhibited the same crystallinity index. However, with increasing crosslinking degree, the interfacial tackiness (E) values increased from 1.8 to 2.7 nm. The lamellar structures of all blends started forming at approximately 160 °C, close to the temperature of pure polyamide. The crosslinked phase enhanced the pseudo‐elastic behavior of the blends and increased their molecular mobility activation energy. Samples with higher crosslinking degree exhibited smaller permanent deformation (0.01%) than those with low crosslinking. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44206.  相似文献   

11.
In far-field ultrasonic welding of plastic parts the distance between the ultrasonic horn and the joint is greater than 6 mm. This study investigated the farfield ultrasonic welding of amorphous (acrylo butadiene styrene and polystyrene) and semicrystalline (polyethylene and polypropylene) polymers. Far-field welding worked well for amorphous polymers. Weld strength improved substantially with increasing amplitude of vibration at the joint interface. Increasing the weld pressure and/or the weld time also resulted in higher weld strengths. Far-field ultrasonic welding was not successful for semicrystalline polymers. The parts melted and deformed at the horn/part interface with little or no melting at the joint interface. A model for wave propagation in viscoelastic materials, which was developed to predict the vibration amplitude experienced at the joint interface, indicates that increasing the length of the samples to a half a wavelength should improve the far-field welding of semicrystalline polymers by maximizing the amplitude of vibration at the joint interface.  相似文献   

12.
The effect of a flame retardant on the weldability of polypropylene with two different talc loadings was studied by microscopy and mechanical tests on hot‐plate welded injection molded tensile test bars. Welding changes the orientation of the talc particles, which align parallel to the weld interface, and can cause voiding of the material with a consequent decrease of weld strength. Welds of the material containing a flame retardant, which melts and volatizes at the temperatures used in welding, exhibited higher voiding and lower relative weld strengths on welding than the grade without a flame retardant. Voiding may be reduced using lower hot plate temperatures and higher welding displacements, but that results in an increase in the transverse orientation of the talc particles in the weld zone. The relative weld strength, which is affected by the composition of the material, was about 50% for the 20% talc‐filled polypropylene and about 45% for the 30% talc‐filled grade containing a flame retardant.  相似文献   

13.
The weldabilities of two commercial blends of polycarbonate (PC) and acrylonitrile‐butadiene‐styrene (ABS) to themselves and to several other resins and blends are assessed through 120 Hz vibration welds of 6.35‐ and 3.2‐mm‐thick specimens. While the thicker specimens of both blends have relative weld strengths of 83%, the thinner specimens in one of the grades have a lower relative weld strength of 73%. Welds of thicker specimens of both grades to PC have relative strengths of 85%. Again, welds of thinner specimens of one of the grades to PC have a lower relative strengths of 68%. Welds of the thinner specimens of this grade with ABS have relative strengths of 85%. Welds of this material with poly(butylene terephthalate) (PBT), a PC/PBT blend, modified poly(phenylene oxide), and a poly(phenylene oxide)/polyamide blend, have relative weld strengths of 45%, 26%, 76%, and 20%, respectively.  相似文献   

14.
This work was conducted to determine if there were any benefits with orbital vibration welding compared to linear vibration welding. The experiments were conducted using standard full‐factorial designs with each process and each material. Four materials, polypropylene/polyethylene copolymer (PP/PE), polycarbonate (PC), acrylonitrile‐butadiene‐styrene (ABS) and Nylon (PA), were studied with each process. The equipment used was a modified Branson VW‐4 with an orbital head that had isolated magnets. The same machine was used to weld with both linear and orbital motions. This was achieved by modifying the controlling parameters of the drive. It was found that compared to linear vibration welding, orbital welding had a reduction of cycle time by 36% and 50% in Phase I and Phase III, respectively. It was also found that orbital welding dissipated 56% and 100% more power than linear vibration welding in Phase I and Phase III, respectively. In addition, it was seen that orbital welding was able to universally join unsupported walls with higher strengths and better consistency compared to linear welding. Other benefits included: a difference in the appearance of weld flash and small increase in weld strength. Some of the limitations of orbital welding that were identified included the effects of disengagement and residual stresses. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
Chitosan‐based scaffolds are widely studied in tissue regeneration because of their biocompatibility and biodegradability. Scaffolds are obtained by different techniques and can be modified with other polymers allowing controlling their properties. This article discusses the assembling of three‐dimensional chitosan porous scaffolds blended with gelatin. Gelatin was used to enhance cells attachment due to the presence of cell adhesion motifs, while improving mechanical strength. 2,5‐dimethoxy‐2,5‐dihydrofurane (DHF) was used as the crosslinking agent, because it allowed to control the reaction kinetics through temperature, time and DHF concentration. The results indicate that scaffolds morphology, pore sizes and distribution, compressive moduli and biodegradation in vitro with lysozyme, can be customized with variations of gelatin content and crosslinking degree. Scaffolds were neither cytotoxic nor genotoxic for human keratinocytes, exhibiting cell–substrate interactions. Our findings demonstrated that chitosan–gelatin scaffolds crosslinked with DHF, as a new crosslinking agent, are suitable in tissue engineering applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43814.  相似文献   

16.
Results from different experiments on friction welding are used to characterize the behavior of polyamide over a wide range of welding conditions. Several types and grades of polyamide were joined using the vibration and spin welding processes. The quality of the welds was evaluated by short time tensile tests and microscopy. In addition to the geometry of the parts being joined, the process parameters and the material were found to affect the quality of the weld, so that associated with each application is a different set of optimum welding parameters.  相似文献   

17.
Flexible lead‐free high energy radiation shielding material was developed through internal compounding. Polymer‐filler interaction, crosslinking density, specific gravity, physicomechanical characteristics, percentage attenuation, and thermal stability of the crosslinked composites were estimated. It was found that even at very high filler loading composites can be crosslinked; however, the crosslinking density was composition dependent and was highest in 10–50 wt% loading range at 100 kGy and 200 kGy. The Nielsen model was applied to understand the micromechanics of the system. Attenuation of gamma radiation from Am241 was not affected by the crosslinking density. Thermal stability of the composites was found to be significantly affected with bismuth oxide loading. POLYM. COMPOS., 37:756–762, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

19.
The crosslinking of metallocene ethylene–octene copolymer was investigated. The crosslinked polymers were prepared using two different techniques, i.e., peroxide crosslinking and silane–water crosslinking. In the former, the crosslinking reaction was conducted in a twin‐screw extruder, in the presence of dicumylperoxide. In the latter, the polymer was first grafted with vinyl trimethoxysilane in the extruder and subsequently crosslinked with water. The paper aims at investigation of the differences between these two techniques, in terms of processing and product mechanical and thermal properties. The results showed that the silane‐crosslinked polymers could be prepared with much higher gel contents than the peroxide‐crosslinked samples. The silane‐crosslinked polymers also retained the elastomeric characteristics of the pure polymer and showed remarkably higher extensibility, better thermal stability, and energy storage capacity. An explanation for the property differences between peroxide‐crosslinked and silane‐crosslinked polymers was proposed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1179–1185, 2004  相似文献   

20.
It was suggested in our previous studies that carbodiimide‐ and genipin‐crosslinked gelatin hydrogels could be used as bioadhesives to overcome the cytotoxicity problem associated with formaldehyde‐crosslinked gelatin hydrogels. In this study, we investigated the crosslinking structures of carbodiimide‐ and genipin‐crosslinked gelatin hydrogels. We found that crosslinking gelatin hydrogels with carbodiimide or genipin could produce distinct crosslinking structures because of the differences in their crosslinking types. Carbodiimide could form intramolecular crosslinks within a gelatin molecule or short‐range intermolecular crosslinks between two adjacent gelatin molecules. On the basis of gel permeation chromatography, we found that the polymerization of genipin molecules could occur under the conditions used in crosslinking gelatin hydrogels via a possible aldol condensation. Therefore, besides intramolecular and short‐range intermolecular crosslinks, additional long‐range intermolecular crosslinks could be introduced into genipin‐crosslinked gelatin hydrogels. Crosslinking a gelatin hydrogel with carbodiimide was more rapid than crosslinking with genipin. Therefore, the gelation time for the carbodiimide‐crosslinked gelatin hydrogels was significantly shorter than that of the genipin‐crosslinked gelatin hydrogels. However, the cohesive (interconnected) structure of the carbodiimide‐crosslinked gelatin hydrogels was readily broken because, unlike the genipin‐crosslinked gelatin hydrogels, there were simply intramolecular and short‐range intermolecular crosslinks present in the carbodiimide‐crosslinked hydrogel. In the cytotoxicity study, the carbodiimide‐crosslinked gelatin hydrogels were dissolved into small fragments in the cultural medium within 10 min. In contrast, the genipin‐crosslinked gelatin hydrogels remained intact in the medium throughout the entire course of the study. Again, this may be attributed to the differences in their crosslinking structures. The genipin‐crosslinked gelatin hydrogels were less cytotoxic than the carbodiimide‐crosslinked gelatin hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4017–4026, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号