首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以化学共沉淀法合成Fe3O4纳米粒子为磁核,采用乳化交联法制备磁性壳聚糖微球,并对其形貌、结构和磁饱和强度等性质进行了表征。以磁性壳聚糖微球作为载体,固定化猪肺粗提物中的血管紧张素转化酶,并对固定化条件进行研究。结果表明,固定化血管紧张素转化酶的最佳条件为:pH值为8.3,最佳温度为50 ℃,最佳时间为1.5 h,最佳酶溶液蛋白浓度为6 mg/mL,此时固定化酶活力最高为0.048 U/g微球。与游离酶相比,固定化酶的pH值稳定性和热稳定性均得到提高。固定化酶重复使用10次,仍然保持40%以上相对活力,说明磁性壳聚糖微球是固定化血管紧张素转化酶的良好载体。  相似文献   

2.
采用分散聚合法,用Fe3O4磁流体和PVA分子单体共聚合,制备表面富含羟基和羧基等官能团,粒径分布在8~64µm的磁性聚乙烯醇微球。以CDI为一种PVA的羧基化剂,并通过共价结合固定化法,使ALDC固定到磁性聚乙烯醇微球表面上。结果,固定化ALDC的总活力、蛋白载量、比活和活性回收率分别为65180U/g、74.72mg/g、872.32U/mg和48.71%。固定化ALDC的最适温度和最适pH值分别为50℃和6.0。ALDC被固定化后其热稳定性、操作稳定性、pH稳定性均比自由酶提高。固定化ALDC在4℃、pH 6.0磷酸缓冲液中保存31d,其相对活力仍保持95.7%,这比其自由酶的提高7个百分点。  相似文献   

3.
目的以大孔树脂D380为载体,戊二醛为交联剂,进行硫酸软骨素裂解酶(ChSase)的固定化,并考察固定化酶的酶学性质。方法分别考察加酶量、吸附温度、吸附时间、吸附pH值、戊二醛交联浓度、交联时间及交联温度对ChSase固定化效果的影响,并分析该固定化酶的最适反应温度、最适反应pH值、米氏常数(Km)及其操作稳定性。结果ChSase的最佳固定化条件为:加酶量150U/g树脂,吸附温度15℃,吸附时间6h,吸附pH值7.0,戊二醛交联浓度0.01%,交联时间3h,交联温度4℃。以此条件制备的固定化酶,其酶结合效率可达79.1%。该固定化ChSase的最适反应温度为45℃;最适反应pH值为7.0;Km达1.46×10-1g/L,较游离酶高;具有较好的操作稳定性。结论以大孔树脂D380为载体固定化ChSase是可行的,所得固定化酶有较高的使用效率和稳定性,适合于工业化生产。  相似文献   

4.
以平均粒径为62.44μm,等电点为9.6的磁性聚胺基微球为载体吸附固定化猪胰腺脂肪酶。结果表明:固定化酶的最适反应pH比自由酶低,最适反应温度比自由酶高,对金属离子和温度具有更好的耐受性。固定化后,脂肪酶动力学米氏常数减小,最大反应速度下降,酶催化反应活化能分别为17.16 kJ/mol(固定化酶)和15.28 kJ/mol(自由酶)。  相似文献   

5.
磁性琼脂糖复合微球固定化纤维素酶的研究   总被引:11,自引:0,他引:11  
邱广亮  李咏兰 《精细化工》2000,17(2):115-117
以磁性琼脂糖复合微球为载体,采用物理吸附法,制备出磁性固定化纤维素酶。确定了固定化工艺条件:pH2-2,吸附时间8 h,酶用量为150 mg/g 微球,在最佳固定化条件下,磁性固定化酶的活力为191-7 U/g 微球,蛋白载量为100 mg/g 微球,比活为1-9 U/mg 蛋白,活性回收率为73-1 % 。并对磁性固定化酶的理化性质进行了研究:磁性固定化酶的最适温度(55 ℃) 与天然酶相同,最适pH(5-0)较天然酶提高1-0 个单位,磁性固定化酶Km 值(4-1×10 -3g/L)较天然酶Km值(7-8×10-3 g/L) 小,热稳定性较天然酶有所提高,磁性固定化酶重复使用10 次,其相对活性保持在60 % 。  相似文献   

6.
《应用化工》2019,(11):2550-2554
采用水热法制备得到磁性Fe_3O_4纳米粒子,以壳聚糖、制备的Fe_3O_4为原料,采用乳化交联法成功制备了磁性壳聚糖微球,并通过SEM、FTIR、VSM、XRD对其进行表征。进一步以制备的磁性壳聚糖微球为载体,采用吸附法制备磁性壳聚糖微球固定化乳糖酶。以酶活力为考察指标,研究了不同固定化条件对制备固定化酶的影响,以及固定化酶的酶学性质。结果表明,乳糖酶的最佳固定化条件为:固定化时间4 h,pH为7.0,乳糖酶酶液浓度为0.6 mg/mL,固定化酶相对于游离酶的pH稳定性和温度稳定性均有一定程度的提高,固定化酶重复使用5次后,酶活仍保留65%以上。  相似文献   

7.
将Cu(Ⅱ)螯合壳聚糖磁性微球用作固定化胃蛋白酶的载体,讨论了固定化时间、pH值和给酶量对酶固定化的影响.确定最适固定化条件为:固定化时间1.0 h、pH值4~5、给酶量150 mg·(g载体)-1.与自由酶比较,固定化胃蛋白酶的催化特性和稳定性均令人满意.  相似文献   

8.
在磁性Fe3O4外包覆一层SiO_2,再在其外包裹壳聚糖制备出磁性硅基壳聚糖微球(MSC),对MSC进行环氧基修饰后用于柚苷酶的固定化研究,并对磁性硅基壳聚糖微球固定化柚苷酶水解柚皮苷的pH、温度、操作和储藏稳定性进行了考察。通过单因素实验,确定了环氧基修饰的磁性硅基壳聚糖微球(MSCE)固定化柚苷酶的最佳工艺条件为:pH 3.0,温度30℃,时间4 h、给酶量57.48 U/mL。在该条件下,MSCE固定化柚苷酶的载酶率、酶活回收率和酶比活力分别为31.29%、88.92%和409.33 U/g。与游离柚苷酶相比,MSCE固定化柚苷酶用于水解柚皮苷具有良好的pH稳定性和温度稳定性,重复使用7次后仍具有53.36%的相对酶活力,4℃条件贮存30 d后仍具有80.97%的相对酶活力。  相似文献   

9.
磁性淀粉微球固定化乙酰乳酸脱羧酶及应用   总被引:9,自引:0,他引:9  
采用复合技术制备出粒径为 100~300nm的磁性淀粉复合微球。以此为载体采用溴化氰共价结合法、戌二醛交联法、物理吸附法固定化a一乙酰乳酸脱羧酶。以戌二醛交联法制备的磁性酶为最佳,其活力为1138.8U/g微球,蛋白载量为89.7mg/g微球,比活为12.6U/mg蛋白,活性回收率为59.6%。并对其理化性质进行了研究:磁性酶最适温度30℃,最适pH为5.0,热稳定性及酸碱稳定性均有所提高,磁性酶重复使用10次,其相对活性仍保持在77.2%。将磁性固定化ALDC用于啤酒发酵,磁性酶用量为 80U/L麦芽汁,主发酵温度为 13℃,保持 10d,发酵后双乙酰含量降到 0.13×10-6以下。  相似文献   

10.
本文在磁性Fe3O4外包覆一层SiO2,再在其外包裹壳聚糖制备出磁性硅基壳聚糖微球(MSC),对MSC进行环氧基修饰后用于柚苷酶的固定化研究,并对磁性硅基壳聚糖微球固定化柚苷酶水解柚皮苷的pH、温度、操作和储藏稳定性进行了考察。通过单因素实验,确定了环氧基修饰的磁性硅基壳聚糖微球(MSCE)固定化柚苷酶的最佳工艺条件为:pH 3.0,温度30 ℃,时间4 h、给酶量57.48 U/mL。在此条件下,MSCE固定化柚苷酶的载酶率、酶活回收率和酶比活力分别为31.29%、88.92%和409.33 U/g。与游离柚苷酶相比,MSCE固定化柚苷酶用于水解柚皮苷具有良好的pH稳定性和温度稳定性,重复使用8次后仍具有53.36%的相对酶活力,4 ℃条件储存一个月后仍具有80.97%的相对酶活力。  相似文献   

11.
采用反相悬浮包埋法制备磁性琼脂糖微球,然后以环氧氯丙烷为活化剂固定血管紧张素转化酶(ACE)。探讨了ACE固定化的影响因素,确定了固定化最适条件:酶溶液蛋白质量浓度为8g/L,pH为7.8,温度为50℃,固定化时间为2h,所得的固定化酶的活力达到0.128U/g;对磁性固定化ACE的性质进行了研究,固定化ACE最适温度为42℃ ,最适pH为8.3。同时,比较了磁性固定化与游离ACE对pH的耐受力和热稳定性,在 pH =5 的缓冲液中放置1h后,固定化ACE和游离ACE酶活力保留率分别为62.1%和40.7%,当pH= 9,两者酶活力保留率分别为95.7%和89.2%;60℃时,两者酶活力保留率分别为50.2%和20.7%;-20℃储存30d后, 两者酶活力保留率分别为90.3%和43.0%;连续操作10次后,固定化ACE活力仍保持53.0%。研究表明,磁性固定化ACE在外加磁场的作用下可快速重复回收利用,具有良好的应用前景。  相似文献   

12.
明胶膜固定化脲酶的制备及性质   总被引:7,自引:0,他引:7  
以明胶为载体,戊二醛为交联剂,采用包埋-交联联用法制备了明胶膜固定化脲酶,其酶活力为6 07U/g载体,酶活力收率为66 1%。最优固定化条件是包酶量为10mg酶/g明胶,ρ(明胶)=100g/L,φ(戊二醛)=0 5%。研究了固定化酶的性质,并与游离酶作了比较,游离酶的最适pH=7 0,固定化酶的最适pH=6 5;游离酶的最适温度为60℃,固定化酶的最适温度升至70℃;固定化酶与游离酶的米氏常数Km分别为11 7mM和12 4mM;固定化酶在80℃下180min仍保留初始活力的10%,而游离酶几乎完全失活。固定化酶重复使用20次其活力仅下降15%,4℃下贮存35d后仍保持初始活力的55%。  相似文献   

13.
分别采用乳化交联法和共沉淀法制备磁性壳聚糖微球载体,并对形貌结构进行比较,结果表明,采用共沉淀法制备的磁性壳聚糖微球负载Fe3O4的效果好,故将其作为载体固定甲酸脱氢酶。最佳固定化条件:添加酶量9 U.g-1,pH=7.0,固定化时间5 h。游离酶和固定化酶的最适宜反应温度分别为50℃和30℃;游离酶的最适宜pH=7.0,固定化酶的最适宜pH=6.0;将游离酶和固定化酶分别置于60℃恒温水浴放置180 min后,游离酶和固定化酶的相对酶活力分别为0.78%和40.39%;将游离酶和固定化酶置于不同pH的缓冲液中保存1 h后,在强酸(pH=2.0)和强碱(pH=10.0)条件下,固定化酶的相对酶活力分别为11.03%和38.43%,游离酶已全部失活;固定化酶重复使用6次后,相对酶活力为73.53%,表明固定化酶具有较好的热稳定性、酸碱稳定性和操作稳定性。  相似文献   

14.
为了克服游离酶在实际工业生产中稳定性不好、活性易丧失、不易回收、重复利用率较低的缺点,对中性蛋白酶进行了固定化研究。将具有磁性的二氧化硅包覆的Fe_3O_4(Fe_3O_4@SiO_2)材料作为载体进行中性蛋白酶固定化实验。考察了交联剂戊二醛的质量分数、交联时间、给酶量、固定化时间、温度和酸碱度对于固定化酶活力的影响,筛选出最佳固定化条件。结果表明,在交联剂质量分数为3%,交联时间为2 h,给酶量为0.20 g/g,固定化时间为3 h的条件下,固定化中性蛋白酶的活性最好。固定化酶的最适温度为50℃,固定化酶的最适pH为7.5,而且一定范围内其热稳定性和pH稳定性都比游离酶有所提高。  相似文献   

15.
以壳聚糖为载体、戊二醛为交联剂对链霉菌LD048在液体培养的条件下合成的硫化物氧化酶进行了固定化,确定的最适固定化条件为酶与载体的质量比为14,交联剂质量分数0.05%,吸附3 h,交联6 h.固定化后酶的活性回收率为58.8%,每克固定化酶的催化活性达到2 000 U,Km值为2.43×10-5mol/L,固定化酶在100℃保温2 h,酶活仅下降6%.在以2.5 mg/(L·h) 的容积负荷对固定化酶进行的装置化运行实验中,连续15天的催化操作后,固定化酶对S2-的去除效果仍在85%以上.  相似文献   

16.
用沉淀聚合制备了P(Am-co-Aa)-Gd(Ⅲ)磁性高分子纳米微球,在此基础上通过共价键合固定脂肪酶。结果表明:固定脂肪酶后的磁性纳米微球具有优异的磁分离能力;钆离子对固定化酶有明显的激活作用,当钆离子质量分数为0.8%时,偶联率和活力回收率分别提高57%和60%;脂肪酶被固定化后其pH稳定性,操作稳定性均比自由酶明显提高。  相似文献   

17.
文中选用新型超大孔聚甲基丙烯酸缩水甘油酯微球偶联木瓜蛋白酶,用于催化酵母蛋白水解制备抗氧化肽。木瓜蛋白酶在微球上负载量为66.5 mg/g,并且均匀分布于微球内外表面;固定化酶比活力为137.5 U/mg,活力回收率达60.6%,高于商品化介孔微球固定化酶的活力。在固定化木瓜蛋白酶的可控催化作用下,酵母蛋白水解产物的最高抗氧化活力为81.2 mol TE/g,远高于蔬果的抗氧化活力。此外,固定化木瓜蛋白酶重复使用20次后仍剩余35%的初始活力。  相似文献   

18.
以壳聚糖和卵磷脂为材料,采用乳化-交联法制备壳聚糖/卵磷脂复合微球,并用光学显微镜和红外光谱对微球进行表征;再以此微球作为载体固定木瓜蛋白酶,以固定率为指标,应用正交试验法优选固定化酶的制备工艺,并对固定化酶的半衰期、米氏常数(Km)、操作稳定性进行研究.结果表明,制备的壳聚糖/卵磷脂复合微球呈完整的圆球形或椭球形;固定化酶的优化制备工艺为:m(壳聚糖)=250 mg,m(壳聚糖):m(卵磷脂)=1:2,V(戊二醛水溶液)=300 μL,m(木瓜蛋白酶)=20 mg,此时制备的固定化酶的固定率达61.94%,半衰期为86.27 h,米氏常数为6.37 mg/mL,固定化酶有很好的操作稳定性.  相似文献   

19.
兰雄雕  陈锡鸿  廖丹葵 《精细化工》2014,31(12):1461-1465,1470
采用反相悬浮包埋法制备磁性琼脂糖微球,然后以环氧氯丙烷为活化剂固定血管紧张素转化酶(ACE)。探讨了ACE固定化的影响因素,确定了固定化最适条件:酶溶液蛋白质量浓度为8 g/L,p H=7.8,温度为50℃,固定化时间为2 h,所得的固定化酶的活力达到0.128 U/g;对磁性固定化ACE的性质进行了研究,固定化ACE最适温度为42℃,最适p H=8.3。同时,比较了磁性固定化与游离ACE对p H的耐受力和热稳定性,在p H=5的缓冲液中放置1 h后,固定化ACE和游离ACE酶活力保留率分别为62.1%和40.7%,当p H=9,两者酶活力保留率分别为95.7%和89.2%;60℃时,两者酶活力保留率分别为50.2%和20.7%;-20℃储存30 d后,两者酶活力保留率分别为90.3%和43.0%;连续操作10次后,固定化ACE活力仍保持53.0%。研究表明,磁性固定化ACE在外加磁场的作用下可快速重复回收利用,具有良好的应用前景。  相似文献   

20.
采用反相悬浮技术,由Fe_3O_4磁粉、甲基丙烯酸缩水甘油酯(GMA)、N,N'-亚甲基双丙烯酰胺(MBAA)制备磁性聚合物微球Fe_3O_4@GM,用磁性微球固定化青霉素酰化酶,在甲醇-磷酸盐缓冲溶液中催化7-氨基-3-脱乙酰氧基头孢烷酸(7-ADCA)与D-苯甘氨酸甲酯(D-PGM)反应合成头孢氨苄,研究了甲醇浓度、7-ADCA与D-PGM摩尔比和反应温度及时间等因素对磁性固定化酶催化合成头孢氨苄性能的影响。结果表明,最佳工艺条件为:溶剂中甲醇含量为40%(v/v),底物7-ADCA与D-PGM浓度分别为60 mmol/L和180 mmol/L(二者摩尔比1∶3),10℃下反应4 h,此时头孢氨苄产率达到72.1%,合成与水解比S/H为1.2;在相同反应条件下,使用游离青霉素酰化酶,二者分别为52.0%和0.7,表明青霉素G酰化酶经多孔磁性微球固定化后,催化活性和选择性得到明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号