首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Holstein cows (n = 30) entering second or greater lactation were fed fat supplements (90 g/d of fatty acids) consisting of Ca salts of either palm fatty acid distillate (control) or a mixture of palm fatty acid distillate and mixed isomers of conjugated linoleic acid (CLA, 30.4 g/ d) from 2 wk prepartum through 20 wk postpartum to determine whether CLA would inhibit milk fat synthesis during early lactation and, in turn, affect energy metabolism of dairy cows during the transition period and early lactation. Feeding CLA did not affect DMI or plasma concentrations of glucose, nonesterfied fatty acids, or beta-hydroxbutyrate during the prepartum period and did not affect postpartum DMI. Feeding CLA reduced milk fat content by 12.5% during early lactation; however, cows fed CLA tended to produce approximately 3 kg/d more milk during the first 20 wk of lactation. Feeding CLA tended to decrease the contribution of short- and medium-chain (C < or = 16) fatty acids to milk fat. Changes in milk yield, milk fat content, and milk fatty acid composition were not apparent until after the second week of lactation. Yield of 3.5% fat-corrected milk, milk protein content, milk protein composition, and calculated energy balance were not affected by treatment. Postpartum concentrations of glucose, nonesterfied fatty acids, and beta-hydroxbutyrate in plasma and hepatic content of glycogen and triglycerides were similar between treatments. These data imply that with CLA treatment in early lactation, dairy cows decreased milk fat synthesis and appeared to respond by partitioning more nutrients toward milk synthesis rather than improving net energy balance.  相似文献   

2.
Under certain dietary situations, rumen biohydrogenation results in the production of unique fatty acids that inhibit milk fat synthesis. The first of these to be identified was trans-10, cis-12 conjugated linoleic acid (CLA), but others are postulated to contribute to diet-induced milk fat depression (MFD). Our objective was to examine the potential role of trans-9, cis-11 CLA in the regulation of milk fat. In a preliminary study, we used gas-liquid and high-performance liquid chromatography techniques to examine milk fat samples from a diet-induced MFD study and found that an increase in trans-9, cis-11 CLA corresponded to the decrease in milk fat yield. We investigated this further using a CLA enrichment of 9, 11 isomers to examine the biological effect of trans-9, cis-11 CLA on milk fat synthesis. Four rumen-fistulated Holstein cows were randomly assigned in a 4 × 4 Latin square experiment involving 5-d treatment periods and abomasal infusion of 1) ethanol (control), 2) a 9, 11 CLA mix (containing 32% trans-9, cis-11, 29% cis-9, trans-11, and 17% trans-9, trans-11), 3) a trans-9, trans-11 CLA supplement, and 4) a trans-10, cis-12 CLA supplement (positive control). The trans-9, trans-11 CLA and trans-10, cis-12 CLA supplements were of high purity (>90%), and all supplements were infused at a rate to provide 5 g/d of the CLA isomer of interest. Milk yield and dry matter intake did not differ among treatments. Compared with the control treatment, milk fat yield was reduced by 15% for the 9, 11 CLA mixture and by 27% for the trans-10, cis-12 CLA treatment. We also found that trans-9, trans-11 CLA had no effect on milk fat yield, and previous research has shown that milk fat yield is unaltered when cows are infused with cis-9, trans-11 CLA. When all treatments were considered, results suggested that trans-9, cis-11 was the CLA isomer in the 9, 11 CLA mix responsible for the reduction in milk fat synthesis, although the magnitude was less than that observed for trans-10, cis-12 CLA. Interestingly, trans-9, trans-11 CLA altered the milk fat desaturase index, further demonstrating that alterations in desaturase can occur independently of effects on milk fat synthesis. Overall, our investigations identified that an increase in milk fat content of trans-9, cis-11 CLA was associated with diet-induced MFD and provided evidence of a role for this isomer in MFD based on the 15% reduction in milk fat yield with abomasal infusion of a CLA enrichment that supplied 5 g/d of trans-9, cis-11 CLA.  相似文献   

3.
The aim of this study was to investigate the effects of lactation and conjugated linoleic acid (CLA) supplementation on adipocyte sizes of subcutaneous (s.c.) and visceral (VC) fat depots in primiparous dairy cows during the first 105 d in milk (DIM). German Holstein heifers (n = 25) were divided into a control (CON) and a CLA group. From 1 DIM until sample collection, CLA cows were fed 100 g of CLA supplement/d (about 6% of c9,t11 and t10,c12 isomers each), whereas the CON cows received 100 g of fatty acid mixture/d instead of CLA. The CON cows (n = 5 each) were slaughtered at 1, 42, and 105 DIM, and the CLA cows (n = 5 each) were slaughtered at 42 and 105 DIM. Adipose tissues from 3 s.c. depots (tailhead, withers, and sternum) and from 3 VC depots (omental, mesenteric, and retroperitoneal) were sampled. Hematoxylin-eosin staining was done to measure adipocyte area (μm2). Retroperitoneal adipocyte sizes were mostly larger than adipocytes from the other sites, independent of lactation time and treatment. Significant changes related to duration of lactation were limited to retroperitoneal fat: adipocyte sizes were significantly smaller at 105 DIM than at 1 DIM in CON cows. Adipocyte sizes were decreased in s.c. depots from the tailhead at 105 DIM and from the sternum at 42 DIM in CLA versus CON cows, whereas for VC depots, adipocyte sizes were decreased in mesenteric fat at 42 and 105 DIM, and in omental and retroperitoneal fat, at 105 DIM in CLA versus CON cows. Within the CLA group, adipocyte sizes were smaller in the s.c. depot from the tailhead at 105 DIM than at 42 DIM. Adipocyte sizes and depot weights were significantly correlated in s.c. depots (r = 0.795) in the CLA group and in retroperitoneal fat both in the CON (r = 0.698) and the CLA (r = 0.723) group. In conclusion, CLA-induced decreases in adipocyte size indicate lipolytic or antilipogenic effects of CLA, or both effects, on adipose tissue in primiparous dairy cows.  相似文献   

4.
Feeding conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating dairy cows, and the effect has been shown to be specific for the trans-10, cis-12 CLA isomer. Our objectives were to examine potential mechanisms by which trans-10, cis-12 CLA inhibits milk fat synthesis. Multiparous Holstein cows (n = 4) in late lactation were used in a balanced 2 x 2 crossover design. Treatments consisted of a 5 d abomasal infusion of either skim milk (control) or purified trans-10, cis-12 CLA (13.6 g/d) emulsified in skim milk. On d 5 of infusion, mammary gland biopsies were performed and a portion of the tissue analyzed for mRNA expression of acetyl CoA carboxylase, fatty acid synthetase, delta 9-desaturase, lipoprotein lipase, fatty acid binding protein, glycerol phosphate acyltransferase and acylglycerol phosphate acyltransferase. Lipogenic capacity was evaluated with another portion of the tissue. Infusion of trans-10, cis-12 CLA decreased milk fat content and yield 42 and 48%, respectively and increased the trans-10, cis-12 CLA content in milk fat from < 0.1 to 4.9 mg/g. Reductions in milk fat content of C4 to C16 fatty acids contributed 63% to the total decrease in milk fat yield (molar basis). Analysis of the ratios of specific fatty acid pairs indicated trans-10, cis-12 CLA also shifted fatty acid composition in a manner consistent with a reduction in delta 9-desaturase. Mammary explant incubations with radiolabeled acetate established that lipogenic capacity was decreased 82% and acetate oxidation to CO2 was reduced 61% when cows received trans-10, cis-12 CLA. Infusing trans-10, cis-12 CLA also decreased the mRNA expression of all measured enzymes by 39 to 54%. Overall, data demonstrated the mechanism by which trans-10, cis-12 CLA inhibits milk fat synthesis includes decreasing expression of genes that encode for enzyme involved in circulating fatty acid uptake and transport, de novo fatty acid synthesis, desaturation of fatty acids and triglyceride synthesis.  相似文献   

5.
Conjugated linoleic acids (CLA) are potent anticarcinogens in animal and in vitro models as well as inhibitors of fatty acid synthesis in mammary gland, liver, and adipose tissue. Our objective was to evaluate long-term CLA supplementation of lactating dairy cows in tropical pasture on milk production and composition and residual effects posttreatment. Thirty crossbred cows grazing stargrass (Cynodon nlemfuensis Vanderyst var. nlemfüensis) were blocked by parity and received 150 g/d of a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of CLA (CLA treatment). Supplements of fatty acids were mixed with 4 kg/d of concentrate. Grazing plus supplements were estimated to provide 115% of the estimated metabolizable protein requirements from 28 to 84 d in milk (treatment period). The CLA supplement provided 15 g/d of cis-9,trans-11 and 22 g of cis-10,trans-12. Residual effects were evaluated from 85 to 112 d in milk (residual period) when cows were fed an 18% crude protein concentrate without added fat. The CLA treatment increased milk production but reduced milk fat concentration from 2.90 to 2.14% and fat production from 437 to 348 g/d. Milk protein concentration increased by 11.5% (2.79 to 3.11%) and production by 19% (422 to 504 g/d) in the cows fed CLA. The CLA treatment decreased milk energy concentration and increased milk volume, resulting in unchanged energy output. Milk production and protein concentration and production were also greater during the residual period for the CLA-treated cows. The CLA treatment reduced production of fatty acids (FA) of all chain lengths, but the larger effect was on short-chain FA, causing a shift toward a greater content of longer chain FA. The CLA treatment increased total milk CLA content by 30% and content of the trans-10,cis-12 CLA isomer by 88%. The CLA treatment tended to decrease the number of days open, suggesting a possible effect on reproduction. Under tropical grazing conditions, in a nutritionally challenging environment, CLA-treated cows decreased milk fat content and secreted the same amount of milk energy by increasing milk volume and milk protein production.  相似文献   

6.
Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis, and the magnitude of milk fat depression is often correlated with the fat content of this isomer. However, the trans-10, cis-12 CLA content does not always correspond to the extent of milk fat depression, and in some instances, an increase in the milk fat content of trans-10, trans-12 CLA has been observed. We synthesized trans-10, trans-12 CLA (>90% purity) and investigated its effect on milk fat synthesis and incorporation into plasma lipids. Three rumen-fistulated Holstein cows were randomly assigned in a 3 × 3 Latin square experiment. Treatments were a 4-d abomasal infusion of 1) ethanol (control), 2) a trans-10, cis-12 CLA supplement (positive control), and 3) a trans-10, trans-12 CLA supplement; 5 g/d of the CLA isomer of interest was provided. Milk yield, dry matter intake, and milk protein were unaffected by treatment. Treatment with trans-10, trans-12 CLA had no effect on milk fat yield, whereas treatment with trans-10, cis-12 CLA reduced milk fat yield by 28%. Incorporation of CLA was greatest for the plasma triglyceride fraction, and the milk fat content was subsequently elevated within the respective treatment groups. The milk fatty acid composition indicated that Δ9-desaturase was reduced significantly for both CLA treatments, but the reduction was greater for the treatment with trans-10, trans-12 CLA. Overall, abomasal infusion of trans-10, trans-12 CLA and trans-10, cis-12 CLA altered the desaturase ratios, but only trans-10, cis-12 CLA reduced milk fat synthesis.  相似文献   

7.
《Journal of dairy science》2022,105(4):3032-3048
The objective of this study was to determine the effects of milk fat depression induced by supplementing conjugated linoleic acid (CLA; trans-10,cis-12 and cis-9,trans-11 CLA) or feeding a higher starch and oil-containing diet (HSO) on metabolic changes in dairy cows after calving. The main hypothesis was that the 2 strategies to decrease milk fat yield could have different effects on performance, energy balance (EB), and inflammatory status in early lactation. Thirty-three Nordic Red dairy cows were used in a randomized block design from 1 to 112 d of lactation and fed one of the following treatments: control (CON), CLA-supplemented diet, or HSO diet. Dry matter intake and milk yield were measured daily whereas milk composition was measured weekly throughout the experiment. Nutrient digestibility, EB, and plasma hormones and metabolites were measured at 3, 7, 11, and 15 wk of lactation in respiration chambers. The HSO diet led to lower intakes of dry matter, neutral detergent fiber, and gross energy compared with CON and CLA diets. The CLA diet and especially the HSO diet resulted in lower energy-corrected milk yield during the first 7 wk of lactation than those fed CON. The EB was numerically higher for HSO and CLA diets compared with CON at wk 3 and 7. Plasma glucose concentration was higher by the CLA diet at wk 3 and by the HSO diet from wk 3 to 15 compared with CON. Plasma nonesterified fatty acids were higher at wk 3 in the CON group (indicating more lipid mobilization) but decreased thereafter to similar levels with the other groups. The HSO-fed cows had higher plasma ceruloplasmin, paraoxonase, and total bilirubin concentrations in the entire experiment and showed the highest levels of reactive oxygen metabolites. These results suggest an increased inflammatory and oxidative stress state in the HSO cows and probably different regulation of the innate immune system. This study provides evidence that milk fat depression induced by feeding HSO (as well as CLA) decreased milk fat secretion and improved EB compared with CON in early lactation. The increase in plasma glucose and paraoxonase levels with the HSO diet may imply a better ability of the liver to cope with the metabolic demand after parturition. However, the negative effect of HSO on feed intake, and the indication of increased inflammatory and oxidative stress warrant further studies before the HSO feeding strategy could be supported as an alternative to improve EB in early lactation.  相似文献   

8.
The aim of this study was to investigate the effects of conjugated linoleic acid supplementation on the synthesis of milk fat in pasture-fed Friesian cows. In four cows, a commercial mixture containing 62.3% (wt/vol) conjugated linoleic acid was infused intraabomasally to avoid rumen fermentation and biohydrogenation. The design was a 4 x 4 Latin square in which each cow received infusions of 0, 20, 40, and 80 g/d of conjugated linoleic acid mixture for 4 d. Cows were fed freshly cut ryegrass/white clover pasture ad libitum. Milk fat concentration was decreased by 36, 43, and 62% and milk fat yield was decreased by 32, 36, and 60% by the 20, 40, and 80 g of conjugated linoleic acid/d treatments. Dry matter intake, milk protein concentration, and protein yield were unaffected by treatments; however, milk yield was increased by 11% during the 40-g conjugated linoleic acid/d treatment. The effects of conjugated linoleic acid infusion were most pronounced in reducing de novo fatty acid synthesis and desaturation. Results show that the inhibitory effect of this conjugated linoleic acid mixture on milk fat synthesis occurs in pasture-fed cows, and demonstrate the potential to dramatically alter gross milk composition. This technology could offer a management tool to manipulate milk composition and energy demands of pasture-fed cows.  相似文献   

9.
The trans-10, cis-12 conjugated linoleic acid (CLA) isomer inhibits milk fat synthesis, whereas milk yield and synthesis of other milk components generally remain unchanged in established lactation. However, in some CLA studies increases in milk yield, milk protein yield, or both have been observed in cows limited in energy, either in early lactation or when grazing pasture. Our objective was to evaluate the performance and monitor peripheral tissue responses to homeostatic signals regulating lipolysis and glucose uptake with CLA supplementation when cows were limited in metabolizable energy in combination with moderate or excess metabolizable protein supply. Holstein cows (n = 48; 112 ± 5 d in milk; mean ± SE) were provided ad libitum access to a diet that met energy and protein requirements for a 16-d standardization interval. Based on performance during this interval, the Cornell Net Carbohydrate and Protein System was used to design energy-limiting rations that provided 80% of metabolizable energy requirements, and these were fed throughout the treatment periods. Cows were randomly allocated to 4 treatments, in a 2-period crossover design. Treatments were 1) moderate metabolizable protein (MP) supply, 2) moderate MP supply + CLA, 3) excess MP supply, and 4) excess MP supply + CLA. Moderate and excess MP supply were at 88 and 117%, respectively, of the MP requirement established during the standardization period, as estimated by the Cornell Net Carbohydrate and Protein System. Each experimental period comprised 16 d, with crossover of CLA within each protein level. The lipid-encapsulated CLA supplement provided 12 g/d of trans-10, cis-12 CLA. Conjugated linoleic acid treatment reduced milk fat yield by 21% but increased milk yield and milk protein yield by 2.6 and 2.8%, respectively. Milk yield and content and yield of both milk protein and fat were unaltered by either protein treatment alone or in combination with CLA. Basal concentrations of glucose, insulin, and nonesterified fatty acids were unaffected by CLA supplementation. The fractional rate of glucose clearance in response to an insulin challenge and the nonesterified fatty acid response to an epinephrine challenge were also not altered by either CLA treatment or MP supply. Overall, the results demonstrate that CLA supplementation when cows are energy-limited allows for repartitioning of nutrients, resulting in increased yields of milk and milk protein, and this can occur without changes in whole-body glucose homeostasis and adipose tissue response to lipolytic stimuli.  相似文献   

10.
Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n = 48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.  相似文献   

11.
The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 × 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.  相似文献   

12.
Reduction of milk fat secretion by the use of conjugated linoleic acid (CLA) supplements may alleviate energy demands during early lactation. The objective of the present study was to evaluate lactational performance, net energy balance, and reproductive response of dairy cows supplemented with 2 doses of CLA from 2 wk before predicted calving until 9 wk postpartum. Holstein cows (n = 48) were divided into 3 treatment groups: 1) control, 2) low dose CLA treatment (CLA-1), and 3) high dose CLA treatment (CLA-2). Supplements for all treatments provided 230 g/d of fat; the control group received Ca salts of palm fatty acid distillate and the CLA groups received a mixture of Ca salts of CLA isomers and Ca salts of palm fatty acid distillate (31.6 and 63.2 g/d of CLA isomers for CLA-1 and CLA-2, respectively). Supplementation with CLA resulted in an 11 and 21% decrease in milk fat yield for CLA-1 and CLA-2, respectively. Milk production and secretion of other milk components did not differ among treatments. Milk energy output was significantly reduced with CLA-2, but net energy balance, body weight, and body condition scores were unaffected. Treatment had no effect on hepatic triglyceride concentration or plasma glucose and insulin, but nonesterified fatty acids tended to be lower for CLA-1. There were no consistent dose-related effects on reproduction variables, and no adverse effects were observed during the treatment or posttreatment period. Supplemental CLA was effective in reducing milk fat content, but it did not have a significant effect on milk yield or net energy balance.  相似文献   

13.
Dairy products are the main source of conjugated linoleic acid (CLA), a functional food component with health benefits. The major source of cis-9, trans-11 CLA in milk fat is endogenous synthesis via delta9-desaturase from trans-11 18:1, with the remainder from incomplete rumen biohydrogenation of linoleic acid. Diet has a major influence on milk fat CLA; however, effects of physiological factors have received little attention. Our objectives were to examine milk fat content of CLA and the CLA-desaturase index with regard to: 1) effect of breed, parity, and stage of lactation, and 2) variation among individuals and the relationship to milk and milk fat. Holstein (n = 113) and Brown Swiss (n = 106) cows were fed a single diet and milk sampled on the same day to avoid confounding effects of diet and season. Frequency distributions demonstrated that milk fat content of CLA and CLA-desaturase index varied over threefold among individuals, and this needs to be considered in the design of experiments. Holsteins had a higher milk fat content of CLA and CLA-desaturase index, but breed differences were minor. Parity and days in milk also had little or no relationship to the individual variation for these two CLA variables. Breed, parity, and days in milk accounted for < 0.1, < 0.3, and < 2.0% of total variation in CLA concentration in milk fat, respectively. Milk fat content of CLA and CLA-desaturase index were essentially independent of milk yield, milk fat percent, and milk fat yield. We speculate that the basis for the genetic variation among individuals is related to rumen output of trans-11 18:1 and to a lesser extent cis-9, trans-11 CLA, and to the tissue amount and activity of delta9-desaturase.  相似文献   

14.
The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis; its ability to reduce milk fat output in a controlled manner as a feed supplement, has potential management applications in the dairy industry. The effectiveness of dietary supplements of trans-10, cis-12 CLA is related to the extent to which their metabolism by rumen bacteria is minimized. A number of processes have been used to manufacture "rumen-protected" feed supplements, and their efficacy can be described by the extent of protection from rumen bacteria as well as postruminal bioavailability. The objective of this study was to investigate the effects of 2 rumen-protected CLA supplements on milk fat synthesis. Using the same initial batch of CLA, supplements were manufactured by the formation of fatty acyl amide bonds or by lipid encapsulation. Three rumen fistulated Holstein cows were randomly assigned in a 3 x 3 Latin square experiment. Treatments were 1) no supplement (control), 2) amide-protected CLA supplement, and 3) lipid-encapsulated CLA supplement. Supplements were fed to provide 10 g/d of the trans-10, cis-12 CLA isomer. Over the 7-d treatment period, 21 and 22% reductions in milk fat yield were observed for the amide-protected and lipid-encapsulated supplements, respectively. Transfer of trans-10, cis-12 CLA into milk fat was also similar for the amide-protected (7.1%) and lipid-encapsulated (7.9%) supplements. Overall, the amide-protected and lipid-encapsulated CLA supplements were equally effective at reducing milk fat synthesis and had no effect on milk yield or dry matter intake.  相似文献   

15.
Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.  相似文献   

16.
During biohydrogenation-induced milk fat depression (MFD), nutrients are spared from milk fat synthesis and are available for other metabolic uses. Acetate is the major carbon source spared and it may increase lipid synthesis in adipose tissue during MFD. The objective of this study was to compare the effect of trans-10,cis-12 conjugated linoleic acid (CLA) and the amount of acetate spared during CLA-induced MFD on adipose tissue lipogenesis. Nine multiparous, lactating, ruminally cannulated Holstein cows (244 ± 107 d in milk; 25 ± 8.4 kg of milk/d; mean ± standard deviation) were randomly assigned to treatments in a 3 × 3 Latin square design. Experimental periods were 4 d followed by a 10-d washout. Treatments were control (CON), ruminal infusion of acetate (AC; continuous infusion of 7 mol/d adjusted to pH 6.1 with sodium hydroxide), or abomasal infusion of CLA (10 g/d of both trans-10,cis-12 CLA and cis-9,trans-11 CLA). Dry matter intake, milk yield, and milk protein yield and percentage were not affected by treatments. Compared with CON, milk fat yield decreased 23% and fat percent decreased 28% in CLA, and milk fat yield increased 20% in AC. Concentration and yield of milk de novo synthesized fatty acids (<C16) were reduced and concentration of preformed fatty acids (>C16) was increased by CLA, compared with CON. Yield of de novo synthesized fatty acids and palmitic acid was increased by AC, compared with CON. Lipogenesis capacity of adipose tissue explants was decreased 72% by CLA, but was not affected by AC. Acetate oxidation by adipose explants was not affected by treatments. Treatments had no effect on expression of key lipogenic factors, lipogenic enzymes, and leptin; however, expression of fatty acid binding protein 4 was reduced in CLA compared with CON. Additionally, hormone-sensitive lipase and perilipin 1 were decreased by CLA and acetate. Plasma glucose and glucagon concentrations were not affected by treatments; however, CLA increased nonesterified fatty acids 17.7%, β-hydroxybutyrate 16.1%, and insulin 27.8% compared with CON, and AC increased plasma β-hydroxybutyrate 18%. In conclusion, during CLA-induced MFD in low-producing cow adipose tissue was sensitive to the anti-lipogenic effects of CLA, while spared acetate did not stimulate adipose lipogenesis. However, acetate may play an important role in stimulating lipogenesis and improving energy status in the mammary gland under normal conditions.  相似文献   

17.
This study was conducted to examine the effects of dietary supplementation with vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acid (CLA) content in milk fat. Twelve lactating Holstein cows in early lactation (30 to 45 d postpartum) were used in a triple 4 × 4 Latin square design. In each period, the cows in each group were fed the same basal diet and received one of the following treatments: 1) control (without oil), 2) 500 g of cottonseed oil, 3) 500 g of soybean oil, and 4) 500 g of corn oil. Each experimental period lasted for 3 wk, with the first 2 wk used for adaptation to the diet. Supplementation with vegetable oils tended to increase milk yield, with the highest milk yield in the cottonseed oil group (35.0 kg/d), compared with the control (34.4 kg/d). Milk fat percentage was decreased, but there were few effects on percentage and yield of milk protein as well as milk fat yield. The cows fed added soybean oil produced milk with the highest content of trans-11 C18:1 (23.8 mg/g of fat), which was twice that of the control (12.6 mg/g of fat). Content of cis-9, trans-11 CLA in milk fat increased from 3.5 mg/g in the control to 6.0, 7.1, and 10.3 mg/g for the cows fed oils from cottonseed, corn, and soybean, respectively. A significant linear relationship existed between trans-11 C18:1 and cis-9, trans-11 CLA. Supplementation with oils doubled the content of total fatty acids in blood plasma, with little difference between different vegetable oil sources. Octadecenoic acid content was significantly higher in blood plasma of animals fed added oils from cottonseed and soybean than those fed with corn oil and control. The plasma trans-11 C18:1 content was significantly higher in the oil-added animals than in control. Supplementation of vegetable oils tended to improve milk production of lactating cows, and the CLA content in milk fat was significantly increased. Soybean oil seemed to be the optimal source to increase CLA production.  相似文献   

18.
A total of 24 Murciano-Granadina dairy goats milked once daily throughout lactation were used to study the effects of including soybean oil (SBO) in the diet on lactational performance and milk fatty acid (FA) content, particularly conjugated linoleic acid (CLA) and trans-vaccenic acid (trans-11 C18:1, TVA). Three weeks after parturition, goats were allocated to 2 balanced groups according to lactation number, body weight, and daily milk yield, and were kept in separate pens. The experiment consisted of a 2-period (28 d each) crossover with 2 dietary treatments: control and SBO (6% as fed in the concentrate). Goats were fed dehydrated fescue (ad libitum), alfalfa pellets (0.5 kg/d), and concentrate (1 kg/d) to which the SBO was or was not added. Forage was fed in the pens, and concentrate was fed individually in 2 equal portions at milking (0900 h) and in the afternoon (1700 h). Final SBO content in the consumed SBO diet was 2.5% (dry matter basis). Diets were isonitrogenous (17.4% crude protein), but their total FA content varied from 2.2% (control) to 4.6% (SBO). There was no effect of SBO on dry matter intake, milk yield, energy-corrected milk, body weight, or body condition score. Compared with the control diet, feeding SBO increased milk fat content (4.57 vs. 5.24%) and yield as well as total solids content. Soybean oil had no effect on milk crude and true protein contents, but it reduced milk casein content (2.48 vs. 2.34%). Short- and medium-chain FA decreased by feeding SBO, whereas long-chain FA increased. Feeding preformed linoleic acid through SBO increased milk concentrations of linoleic, oleic, and stearic FA but reduced levels of linolenic and palmitic FA. As a consequence, feeding SBO decreased the saturated-to-unsaturated FA ratio and the atherogenicity index. Compared with the control treatment, milk contents of cis-9, trans-11 CLA (0.68 vs. 2.03%) and TVA (2.04 vs. 6.41%) in the SBO treatment increased by approximately 200%. In conclusion, feeding a moderate dose of SBO to dairy goats was a useful way to increase milk fat, CLA, and TVA contents in milk and to reduce the atherogenicity index without negative effects on intake, milk yield, and protein content.  相似文献   

19.
Mixed conjugated linoleic acid (CLA) isomers decrease milk fat synthesis during established lactation, but their ability to cause milk fat depression (MFD) immediately postpartum remains unclear. Multiparous Holstein cows (n = 19) were randomly assigned to 1 of 4 doses of rumen-protected (RP) CLA supplements (0, 200, 400, and 600 g/d); each dose provided equal amounts of fatty acids by replacing and balancing treatments with an RP supplement of palm fatty acid distallate. Doses provided a total of 468 g fatty acids/d and 0, 62, 125, or 187 g of mixed CLA isomers/d, respectively. The CLA supplement contained a variety of CLA isomers: 5.4% trans-8, cis-10; 6.3% cis-9, trans-11; 7.9% trans-10, cis-12; and 8.2% cis-11, trans-13 CLA. Each group received treatments from approximately -10 to 21 d relative to calving. To improve palatability and ensure complete consumption, doses were mixed with equal amounts of steam-flaked corn and dried molasses; one-half the supplement was fed at 0600 h, and the remaining supplement was fed at 1800 h. Milk yield and individual feed intake were recorded daily, and milk samples were obtained from each cow every 2nd day (at both milkings) starting on d 1 postpartum. There were no differences in dry matter intake (17.1 kg/d), milk yield (34.2 kg/d), protein content (3.74%), lactose content (4.61%), or yield of milk protein or lactose. The CLA supplementation decreased overall milk fat content in a dose-responsive manner (4.57, 3.97, 3.32, and 3.10, respectively), and milk fat yield displayed the same progressive decline. The dose-dependent decrease in milk fat content was evident during wk 1 and became highly significant during wk 2 and 3. The milk fat yield response pattern was similar, and by d 21, the highest RP-CLA supplement decreased milk fat content and yield by 49 and 56%, respectively. These data clearly indicate RP-CLA can markedly (40 to 50%) induce MFD immediately postpartum without negatively affecting other production parameters.  相似文献   

20.
The efficacy of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well documented in dairy cows, but studies with other ruminant species are less convincing, and there have been no investigations of this in sheep. Therefore, the current study was designed to determine whether trans-10, cis-12 CLA would inhibit milk fat synthesis in sheep. Twenty multiparous ewes in early lactation were paired and randomly allocated to 2 treatments: grass hay plus concentrate either unsupplemented (control) or supplemented with lipid-encapsulated CLA to provide 2.4 g/d of trans-10, cis-12 CLA. The CLA dose was based on published responses of dairy cows extrapolated to ewes on a metabolic body weight basis. The experimental design was a 2-period crossover with 10-d treatment periods separated by a 10-d interval. Compared with the control, CLA supplementation reduced milk fat content from 6.4 to 4.9% and reduced fat yield from 95 to 80 g/d. The CLA treatment also increased milk yield from 1,471 to 1,611 g/d and increased protein yield from 68 to 73 g/d. Milk protein content and DMI were unaffected by treatment. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was < 0.01 and 0.12 g/100 g of fatty acids for the control and CLA treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the dietary supplement into milk fat was 3.8%. Results of the present study demonstrate that a CLA supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep in a manner similar to dairy cows when fed at an equivalent dose (metabolic body weight basis). Furthermore, the nutrients spared by the reduction in milk fat coincided with an increase in milk and milk protein yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号