首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
催化湿式氧化法滴流床反应器处理污水的研究和应用   总被引:4,自引:0,他引:4  
主要研究催化湿式氧化法滴流床反应器发展过程、研究进展和实际应用,论述了在湿式氧化法中滴流床反应器的特点和影响因素,并且对进一步的深入研究,工艺上的改进及其应用前景提出了参考建议。  相似文献   

2.
Butadiene has been produced from butane by oxidative dehydrogenation on a MoO3/MgO catalyst using a two-zone fluidized bed reactor (TZFBR). The effect of the main TZFBR operating variables was studied, and its performance was compared with that of conventional fluidized beds and fixed bed reactors loaded with the same catalyst. These results have been compared with those obtained on a selective V2O5/MgO catalyst.  相似文献   

3.
A novel approach for the synthesis of ethyl lactate using a simulated moving bed reactor was evaluated by experiments as well as by simulations. A mathematical model considering external and internal mass-transfer resistances and variable velocity due to change of liquid composition was developed to describe the dynamic behaviour of the SMBR and it was validated by the experiments performed; it was observed that the experimental results were well predicted by the model. The effect of operating parameters, as the feed composition, SMBR configuration and switching time on the SMBR performance parameters at the optimal operating points and/or reactive/separation regions was studied. It was shown that the SMBR is a very attractive technology for the production of ethyl lactate, since under appropriate conditions the lactic acid conversion can be driven to completion and productivity as high as and purity of 95% can be obtained.  相似文献   

4.
5.
A long-term study was carried out to evaluate the performance of submerged membrane sequencing batch reactors (SM-SBR) for greywater treatment. Three pilot plants were operated in three different countries with distinct wastewaters to prove that treated greywater can be used for reuse purposes.In all plants the permeate quality fulfilled in most cases the high mandatory values of different European directives. Membrane permeability declined significantly within a period of three to four months so that recovery cleanings were necessary 3 to 4 times a year. In general, the treated greywater from an SM-SBR can be reused for irrigation or cleaning purposes. SM-SBR for greywater treatment are especially interesting in cases of space limitations where the small footprint of the system can outweigh inconveniences like frequent chemical cleanings.  相似文献   

6.
A. Aho  K. Eränen  M. Hupa 《Fuel》2008,87(12):2493-2501
Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450 °C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite.  相似文献   

7.
Steam gasification experiments were performed using a low-rank coal from South Australia, a marine microalga, and a blend of leached microalgal biomass and coal, in a spouted, fluidized bed reactor. The effect of different operating conditions – air-to-fuel ratio (A/F), steam-to-fuel ratio (S/F) and bed temperature (Tb) – on the producer gas composition was investigated. Producer gas compositions were analyzed and samples of bed material were also examined to identify ash components formed during each experiment. The optimum operating conditions for coal gasification, in this system, were identified to occur with A/F = 1.82, S/F = 0.75 and Tb = 850 °C. These conditions resulted in a producer gas with the highest heating value (per mass of fuel fed), the highest extent of carbon conversion and the optimum H2:CO ratio for Fischer–Tropsch synthesis. In addition, preliminary attempts to gasify a sun-dried marine microalga are reported. The dried biomass, sieved to 1.0–3.35 mm, was gasified with air and steam. Preliminary experiments, utilizing the as-received biomass, proved unsuccessful due to rapid bed sintering. Leaching of the algal biomass to remove the extra-cellular salt and co-gasification of the resultant biomass (10 wt%) with low-rank coal also proved unsuccessful due primarily to blockages of the downstream product lines most likely due to attrition of the algae feed in the screw feeder and elutriation from the bed.  相似文献   

8.
Yu-Hong Qin  Wen-Ying Li 《Fuel》2010,89(7):1344-1098
The sawdust tar was generated from air-steam gasification in the fluidized bed reactor at atmospheric pressure. The gasification temperature and mass ratio of steam to sawdust were used as adjustable variables with which the amount of sawdust tar formation and the corresponding tar properties. Gel permeation chromatography (GPC) coupled with diode array detector (DAD) was employed to analyze the tar. It was found that the molecular weight distribution (MWD) of tar was unchanged under investigated conditions. The majority of the tar components are aromatic compounds, paraffin with conjugated bonds and olefin. Tar molecular weight (MW) depends on the H free radical amount, which is related to the steam added during the gasification. The steam can prevent the polymerization reaction and more conjugated side-chain compounds would be formed. In the end, the sawdust tar formation process has been described from the tar structure obtained.  相似文献   

9.
The reaction characteristics of two-step oxychlorination to produce 1,2-dichloroethane as a feedstock of PVC production were determined in a fluidized bed reactor. The effects of superficial gas velocity and gas composition on the reactivity and fluidization stability have been determined to find the optimum operating conditions in the continuous fluidized bed reactor system. It has been found that the average ethylene conversion is 94% with ethylene dichloride (EDC) selectivity of 97-98%, the average HCl conversion is 97.4%, the solid reactant conversion is 54% and a solid inventory ratio for the optimum reaction conversion is 3.3 in the process.  相似文献   

10.
The combination of a Pd hollow fibre membrane with a Two-Zone Fluidized Bed Reactor (TZFBR) is described for catalytic dehydrogenation of propane. This configuration aims to combine the in situ catalyst regeneration provided by the TZFBR with the increased conversion that can be achieved with a Pd membrane, which removes hydrogen from the reactor, thus enhancing the reaction rate and in theory allowing even higher than equilibrium conversion. The experiments show that the Pd hollow fibre membrane acts effectively removing hydrogen from the reaction media and that with a Pt–Sn/Al2O3 catalyst the TZFBR can achieve steady state operation in spite of the increased coking of the catalyst. However, with this catalyst the quicker coke formation caused by the removal of hydrogen outweighs the beneficial effect of hydrogen removal and the yield achievable for a given feed is lower in the presence of the membrane. A conclusion from these results is that a catalyst with lower coke tendency is needed to apply this combination of Pd membrane and TZFBR.  相似文献   

11.
Particle growth kinetics of calcium fluoride in a fluidized bed reactor   总被引:1,自引:0,他引:1  
Crystallization process in a fluidized bed reactor to remove fluoride from industrial wastewaters has been studied as a suitable alternative to the chemical precipitation in order to decrease the sludge formation as well as to recover fluoride as synthetic calcium fluoride.In the modeling, design and control of a fluidized bed reactor for water treatment it is necessary to study the particle growth kinetics. Removal of fluoride by crystallization process in a fluidized bed reactor using granular calcite as seed material has been carried out in a laboratory-scale fluidized bed reactor in order to study the particle growth kinetics for modeling, design, control and operation purposes.The main variables have been studied, including superficial velocity (SV, ), particle size of the seed material (L0, m) and supersaturation (S). It has been developed a growth model based on the aggregation and molecular growth mechanisms. The kinetic model and parameters given by the equation fits well the experimental data for the studied range of variables.  相似文献   

12.
A model of a bench-scale methanation reactor was set-up by modifying the classical two-phase model approach and introducing an additional bulk flow from bubble to dense phase to consider the volume contraction of the methanation reaction. The model uses experimentally determined kinetics and hydrodynamic correlations from literature. It was satisfyingly validated by comparing the calculated gas concentration profiles with the experimental data, especially with respect to initial reaction rates and reactor exit concentrations.A sensitivity study with respect to different bubble size correlations, mass transfer rates and considering or neglecting the bulk flow (influence of volume contraction caused by the methanation reaction) was carried out. It showed that the bubble size correlation by Werther and the resulting gas concentration profiles fit the measured data better than the computed gas concentration profiles using the bubble size correlation by Rowe.Neither a variation of the mass transfer coefficient nor neglecting the bulk flow in the fluidized bed model did yield further improvement of the calculated concentration profiles.  相似文献   

13.
Aerobic degradation or polishing is an essential step in the combined anaerobic/aerobic treatment of wastewater. In this study, a type of porous glass beads was used for immobilization of microbial cells in a three‐phase aerobic fluidized bed reactor (AFBR) with an external liquid circulation. The effects of superficial gas and liquid velocities on bed expansion, solid and gas hold‐ups and specific oxygen mass transfer rate, kLa, were investigated. A tracer study showed that the mixing and flow pattern in the 8 dm3 reactor could be simulated by a non‐ideal model of two continuous stirred tank reactors (CSTRs) in series. By treating an effluent from an upflow anaerobic sludge blanket (UASB) digester, the distribution of suspended and immobilized biomass in the reactor as well as the kinetics of COD removal were determined. The specific oxygen mass transfer rate, kLa, at a superficial gas velocity of 0.7 cm s−1 dropped by about 30% from 32 h−1 in tap water to 22 h−1 after a carrier load of 15% (v/v) was added. The measured kLa further dropped by about 20% to 18 h−1 in the wastewater, a typical value of the bubbling fermenters with no stirring. Compared with the aerobic heterotrophs under optimum growth conditions, the microbes in this reactor which was fed with anaerobic effluent plus biomass behaved like oligotrophs and showed slow specific COD removal rates. This might be attributed to the presence of a significant amount of obligate anaerobes and facultative organisms in the aerobic reactor. This was confirmed by a relatively low intrinsic oxygen uptake rate of the microbial population in the reactor, 94 mg O2 dm−3 h−1 or 19 mg O2g VS−1 h−1. © 1999 Society of Chemical Industry  相似文献   

14.
Mesoscale drag model is of crucial significance for the reliability and accuracy in coarse-grid EulerianEulerian two-fluid model(TFM) simulations of gas-solid flow hydrodynamics in fluidized bed reactors.Although numerous mesoscale drag models have been reported in the literature,a systematic comparison of their prediction capability from the perspective of heterogeneity analysis is still lacking.In this study,in order to investigate the effect of several typical drag models on the hydrodynamic ...  相似文献   

15.
This study focuses on the correlation between the thermo-rheological properties of a thermosetting powder coating system with its surface structure build-up. Epoxy powder coating systems, which displayed surface matting and surface wrinkling, were examined. Firstly, the evolution of the complex viscosity was correlated with the cure kinetic. Secondly, the structure build-up on the surface of the coatings was investigated with a combined SEM-CLA profilometry analysis at different stages of curing process for both EFB and CHDFB coating processes. Different finishes were found to characterize the films applied by using EFB and CHDFB coating processes as a result of the different way the film is heated by. Finally, a strict relationship of film morphology to the degree of conversion and to the evolution of the complex viscosity was found out for both EFB and CHDFB coating processes. The surface structure is built up after gelation point and continues to evolve after gelation with a full development of the film fine structure. Differences were observed in the surface structure build-up when different curing temperature was used, thereby indicating an influence of minimum viscosity on achievable finishing.  相似文献   

16.
The pyrolysis of poly-(methyl methacrylate) (PMMA) has been studied in a pyrolysis plant provided with a conical spouted bed reactor. This reactor is an interesting technology for the pyrolysis of waste plastics due to its excellent hydrodynamic behaviour and its high heat transfer and versatility. A previous kinetic study was carried out in thermobalance, in which the degradation of this polymer was observed to begin at low temperatures, 553 K. Consequently, the activation energy is low compared to other plastics. The influence of temperature on pyrolysis product distribution in the conical spouted bed reactor has been studied in the 673–823 K range. The products obtained at low temperatures are mainly the monomers of the polymer used for the study methyl methacrylate (MMA) and ethyl acrylate (EA). When the pyrolysis temperature is increased, the yield of monomers is lower due to the higher severity of secondary reactions, and there is a significant increase in the yield of gases. The maximum monomer recovery has been obtained at 673 K, with the yields of MMA and EA being 86.5% and 6.2%, respectively.  相似文献   

17.
BACKGROUND: The antibiotics in industrial and munipical wastewaters could not be removed effectively in conventional anaerobic and aerobic biological treatment plants. Few studies have been performed to investigate the biodegradation and inhibition kinetics of oxytetracycline (OTC) on methanogens and total volatile fatty acids (TVFA). RESULTS: A high rate anaerobic multichamber bed reactor (AMCBR) was effective in removing the molasses‐chemical oxygen demand (COD), and the OTC antibiotic with yields as high as 96% at an influent OTC loading rate of 133.33 gOTC m?3 day?1 at a hydraulic retention time (HRT) of 2.25 days. Increasing the OTC loading rates from 22.22 gOTC m?3 day?1 to 133.33 gOTC m?3 day?1 improved both hydrolysis and specific utilization of molasses‐COD. The inhibition constants of TVFA (KI?TVFA?meth) and OTC (KI?OTC?meth) on methanogens decreased at OTC loadings > 133.33 gOTC m?3 day?1. The direct effect of OTC loadings > 133.3 gOTC m?3 day?1 on acidogens and methanogens was evaluated using the Haldane inhibition kinetic. CONCLUSION: OTC antibiotic was effectively removed in a sequential AMCBR/completely stirred tank reactor (CSTR). The Haldane inhibition constant (KID) decreased significantly at high OTC loads indicating the increase in toxicity. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
作为一种新型的废水生物处理技术,三相生物流化床反应器近年来备受关注。本文从流体力学性能、气液传质特性、反应器结构设计、生物载体等方面对三相生物流化床的技术特点及研究现状进行了综述,表明该类反应器在内部流体力学特征和传质特征方面较其它生物反应器更为复杂,反应器结构、运行参数及载体的选择对处理效果有较大影响;同时总结了其在含油废水处理中的研究成果和进展;最后指出:用于指导反应器结构设计的数学模型的建立及反应器的工程验证仍是该技术今后研究开发的重点。  相似文献   

19.
A pilot‐plant membrane bioreactor (MBR) and two pilot‐plant hybrid moving bed biofilm reactor–membrane bioreactors (MBBR–MBRs), divided into three aerobic and one anoxic chambers, were started up for the treatment of salinity‐amended urban wastewater. The MBBR–MBR systems worked with and without carriers in the anoxic zone (MBBR–MBRanox and MBBR–MBRn/anox, respectively). The systems were operated from start‐up to stabilization, showing high removal of organic matter—a maximum of 90% chemical oxygen demand and 98% biochemical oxygen demand on the fifth day for MBBR–MBRn/anox in the stabilization phase—but low nitrogen elimination—30% maximum for MBBR–MBRn/anox in the stabilization phase. Biofilm attached to carriers reached less than 50 mg L?1 in the hybrid system. MBR showed faster kinetics than the two MBBR–MBR systems during start‐up, but the opposite occurred during stabilization. Maximum specific growth rates for heterotrophic and autotrophic biomass were 0.0500 and 0.0059 h?1 for MBBR–MBRn/anox in the stabilization phase. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3329–3342, 2017  相似文献   

20.
The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J20 slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ranged from €0.03 to €0.12 per m3, mainly depending on SGDm (from 0.05 to 0.3 m3·m?2·h?1) and MLSS (from 5 to 25 g·L?1). The optimal SGDm resulted in approx. 0.1 m3·m?2·h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号