首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-cell transmembrane potassium currents were studied in somatic membrane of freshly isolated rat dorsal root ganglion neurons. We defined three types of potassium currents, which were separated on the basis of their different potential dependence of activation and sensitivity to external tetraethylammonium and 4-aminopyridine. The potential dependence of kinetic and steady-state properties of a fast inactivating potassium current, a slow inactivating potassium current and a non-inactivating delayed rectifier current were described by the Hodgkin-Huxley equations. A transient fast inactivating potassium current was activated at the most negative membrane potentials and was not reduced in the presence of 10 mM tetraethylammonium in the external solution. 4-Aminopyridine (2 mM) caused an 80% inhibition of this current. The activation of the fast inactivating potassium current was properly described by fitting a single exponent raised to the fourth power. The time constant of activation changed from 4 to 1 ms in the voltage range between -30 and +40 mV. The time constant of inactivation decreased from 35 to 15 ms over the same range of potentials. Parameters for the fit of a Boltzmann equation to mean values for steady-state activation were V1/2=-20mV, k=11.8mV, and for steady-state inactivation V1/2= -85 mV, k=-9.8 mV. A transient slow inactivating potassium current had an activation threshold between -40 and -30 mV. At 2 mM 4-aminopyridine, the depression of the slow potassium current was 55%. The extracellular application of 10 mM tetraethylammonium was less effective and evoked a 40% reduction. The activation of the slow inactivating potassium current was also described by a single exponential function raised to the fourth power. The time constant of activation decreased from 12 ms at a membrane potential of -10 mV to 4 ms at the potential of 60 mV. The inactivation of slow inactivating potassium current was described by two exponents. The time constant for the fast exponent ranged from 300 ms at -20 mV to 160 ms at +60 mV. The slower exponent was also potential dependent and its time constant ranged from approximately 2600 to 1600 ms over the same potentials. Parameters for the Boltzmann equation fittings to mean values were V1/2= -12.8 mV, k=13.4 mV and V1/2= -54.6 mV, k= -12 mV for steady-state activation and inactivation, respectively. A non-inactivating delayed rectifier potassium current was activated at the most positive membrane potentials. This non-inactivating current did not change in the presence of 4-aminopyridine. Extracellular tetraethylammonium (10 mM) caused a 70% reduction of this current. The activation of the non-inactivating potassium current was described by one exponent raised to the fourth power. The time constant for activation ranged from 85 ms at -5 mV to 30 ms at 45 mV. No time-dependent inactivation was observed during 15-s testing potentials in the voltage range between 10 and +60 mV. The activation behavior was characterized by V1/2=15.3 mV, k=12.5 mV. The densities of these potassium currents were studied for three groups of animals: one, five to six and 14-15 days of postnatal development. Fifty cells were examined in each age group. All three types of potassium currents were found in each investigated neuron. The mean densities of slow and fast inactivating potassium currents increased during ontogenetic development. The densities of non-inactivating delayed rectifier potassium current decreased in the first week of ontogenetic development and did not change thereafter.  相似文献   

2.
The aim was to investigate outward currents in single, isolated, human, atrial myocytes and to determine the relative contribution of individual current components to the total outward current. Currents were recorded using the whole-cell patch-clamp technique at 36-37 degreesC. Individual outward current components were estimated from recordings of total outward current using a mathematical procedure based on the inactivation time course of the respective currents. This method allows estimation of outward currents without the use of drugs or conditioning voltage-clamp protocols to suppress individual current components. A rapidly activating and partially inactivating total outward current was recorded when myocytes were voltage clamped at potentials positive to -20 mV (peak current density 24. 0+/-0.97 pA/pF at +40 mV; n=107 cells, 33 patients). This total outward current comprised three overlapping currents: a rapidly inactivating, transient, outward current (Ito1) a slowly and partially inactivating current (ultrarapid delayed rectifier, IKur) and a third current component which most probably reflects a non selective cation current (not characterized). The average current densities at +40 mV were 8.92+/-0.44 pA/pF for Ito1 and 15.1+/-0.72 pA/pF for IKur (n=107 cells). Recovery from inactivation was bi-exponential for both currents and was faster for Ito1. A slowly activating delayed rectifier current (IK) was not found. The current densities of peak Ito1 and IKur varied strongly between individual myocytes, even in those from the same patient. The ratio IKur/Ito1 was 0.5-6.9 with a mean of 1.98+/-0.11 (n=107 cells), suggesting that IKur is the main repolarizing current. The amplitudes of the total outward current, Ito1 and IKur, and the ratio of the latter two were independent of patient age (16-87 years).  相似文献   

3.
The K+ channel blocking action of the class Ic antiarrhythmic agent flecainide was compared with that of propafenone and quinidine in isolated adult rat ventricular myocytes by using the whole-cell patch-clamp technique. In rat ventricular myocytes, depolarization activates both an inactivating (ITO) and a maintained (IK) outward K+ current. Flecainide, propafenone and quinidine all were potent inhibitors of ITO with IC50s of 3.7, 3.3 and 3.9 microM, respectively. Flecainide and quinidine were less potent inhibitors of IK than was propafenone with IC50s of 15 and 14 microM compared with an IC50 of 5 microM for propafenone. By contrast with their effects on outward currents, these agents produced little or no inhibition of the inward rectifier K+ current, even when present at 300 microM. All three agents produced a concentration-dependent increase in the rate of inactivation of ITO but they only produced minor hyperpolarizing shifts (approximately 3 mV) in the voltage dependence of steady-state inactivation. Although propafenone had little effect on the rate of ITO recovery from inactivation (tau CONTROL = 64 +/- 5 ms; tau PROPAFENONE = 84 +/- 9 ms), ITO recovery in the presence of flecainide and quinidine was biexponential; it exhibited an additional slow component (tau FAST = 67 +/- 5 ms and tau SLOW = 2580 +/- 1500 ms for flecainide; tau FAST = 55 +/- 5 ms and tau SLOW = 871 +/- 99 ms for quinidine). Consistent with these observations, flecainide and quinidine, but not propafenone, produced use-dependent block of ITO at a stimulation frequency of 1 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Whole cell voltage-clamp techniques were employed to characterize the sodium (Na) conductances in acutely dissociated, mature guinea-pig cerebellar Purkinje cells. Three phenomenological components were noted: two inactivating and a persistent component (I(P)(Na). All exhibited similar sensitivities to tetrodotoxin (TTX; IC50 approximately 3 nM). The inactivating Na current demonstrates two components with different rates of inactivation. The persistent component activates at a more negative membrane potential than the inactivating components and shows little inactivation during a 5-s pulse. The amplitude of the persistent Na conductance had a higher Q10 than the inactivating Na conductance (2.7 vs. 1.3). (I(P)(Na) rapidly activates (approximately 1 ms) and deactivates (< 0.2 ms) and like the fast component appears to be exclusively Na permeable. (I(P)(Na) is not a "window" current because its range of activation exceeds the small overlap between the steady-state activation and inactivation characteristics of the inactivating current. Anomalous tail currents were observed during voltage pulses above -40 mV after a prepulse above -30 mV. The tails rose to a maximum inward current with a time constant of 1.5 ms and decayed to a persistent inward current with a time constant of 20 ms. The tails probably arose as a result of recovery from inactivation through the open state. The noise characteristics of (I(P)(Na) were anomalous in that the measured variance was lower at threshold voltages than would be predicted by a binomial model. The form of the variance could be partially accounted for by postulating that the maximum probability of activation of the persistent current was less than unity. The noise characteristics of (I(P)(Na) are such as to minimize noise near spike activation threshold and sharpen the threshold.  相似文献   

5.
Voltage-gated K+ channel (Kv) pore-forming (alpha) subunits of the Kv1 and Kv4 subfamilies have been cloned from heart cDNA libraries, and are thought to play roles in the generation of the transient outward K+ current, Ito. Heterologous expression of these subunits in Xenopus oocytes, however, reveals K+ currents that are quite distinct from Ito. In the experiments here, the detailed time- and voltage-dependent properties of the currents expressed in mammalian cell lines and in cardiac myocytes by Kv1.4 and Kv4.2 were examined and compared to previous findings in studies of oocytes, as well as to Ito characterized in various myocardial cells. As in oocytes, expression of Kv1.4 in HEK-293, Ltk- or neonatal rat ventricular cells reveals rapidly activating K+ currents. In contrast to the currents in oocytes, however, there are two components of inactivation of the Kv1.4-induced currents in mammalian cells, and both components are significantly slower in myocytes than in either HEK-293 or Ltk- cells. In addition, in all three cell types, recovery of Kv1.4 from steady-state inactivation is very slow, proceeding with mean time constants in the range of 6-8 s. The properties of Kv4.2-induced currents also vary with cell type and, importantly, the rates of activation, inactivation and recovery from inactivation are significantly faster in mammalian cells than in Xenopus oocytes. In HEK-293, Chinese hamster ovary (CHO) and neonatal rat ventricular cells, for example, the currents recover from steady-state inactivation with mean (+/-SD) time constants of 153+/-32 (n=12), 245+/-112 (n=10) and 86+/-38 (n=11) ms, respectively; therefore, recovery proceeds 5-10 times faster than observed for Kv4.2 in oocytes. These results emphasize the importance of the cellular expression environment in efforts to correlate endogenous K+ currents with heterologously expressed K+ channel subunits. In addition, the finding that Kv alpha subunits produce distinct K+ currents in different cells suggests that cell-type-specific associations with endogenous Kv alpha or accessory beta subunits and/or post-translational processing play roles in determining the properties of functional K+ channels.  相似文献   

6.
Three kinetically distinct Ca2+-independent depolarization-activated K+ currents in callosal-projecting rat visual cortical neurons. J. Neurophysiol. 78: 2309-2320, 1997. Whole cell, Ca2+-independent, depolarization-activated K+ currents were characterized in identified callosal-projecting (CP) neurons isolated from postnatal day 7-16 rat primary visual cortex. CP neurons were identified in vitro after in vivo retrograde labeling with fluorescently tagged latex microbeads. During brief (160-ms) depolarizing voltage steps to potentials between -50 and +60 mV, outward K+ currents in these cells activate rapidly and inactivate to varying degrees. Three distinct K+ currents were separated based on differential sensitivity to 4-aminopyridine (4-AP); these are referred to here as IA, ID, and IK, because their properties are similar (but not identical) K+ currents termed IA, ID, and IK in other cells. The current sensitive to high (>/=100 mu M) concentrations of 4-AP (IA) activates and inactivates rapidly; the current blocked completely by low (相似文献   

7.
Single high-voltage-activated (HVA) Ca2+ channel activity was recorded in rat insulinoma RINm5F cells using cell-attached and outside-out configurations. Single-channel recordings revealed three distinct Ca2+ channel subtypes: one sensitive to dihydropyridines (DHPs)-(L-type), another sensitive to omega -conotoxin (CTx)-GVIA (N-type) and a third type insensitive to DHPs and omega -CTx-GVIA (non-L-, non-N-type). The L-type channel was recorded in most patches between -30 and +30 mV. The channel had pharmacological and biophysical features similar to the L-type channels described in other insulin-secreting cells (mean conductance 21 pS in control conditions and 24 pS in the presence of 5 microM Bay K 8644). The non-L-, non-N-type channel was recorded in cells chronically treated with omega -CTx-GVIA in the presence of nifedipine to avoid the contribution of N- and L-type channels. Channel activity was hardly detectable below -10 mV and was recruited by negative holding potentials (< -90 mV). The channel open probability increased steeply from -10 to + 40 mV. Different unitary current sublevels could be detected and the current voltage relationship was calculated from the higher amplitude level with a slope conductance of 21 pS. Channel activity lasted throughout depolarizations of 300-800ms with little sign of inactivation. Above 0 mV the channel showed a persistent flickering kinetics with brief openings (tau o 0.6 ms) and long bursts (tau burst 60 ms) interrupted by short interburst intervals. The third HVA Ca2+ channel subtype, the N-type, had biophysical properties similar to the non-L-, non-N-type and was best identified in outside-out patches by its sensitivity to omega -CTx-GVIA. The channel was detectable only above -10 mV from a -90 mV holding potential, exhibited a fast flickering behaviour, persisted during prolonged depolarizations and had a slope conductance of about 19 pS. The present data provide direct evidence for a slowly inactivating non-L-, non-N-type channel in insulin-secreting RINm5F cells that activates at more positive voltages than the L-type channel and indicate the possibility of identifying unequivocally single HVA Ca2+ channels in cell-attached and excised membrane patches under controlled pharmacological conditions.  相似文献   

8.
We describe, for the first time, a potassium current in acutely isolated mouse pancreatic acinar cells. This current is activated by depolarization and has many of the characteristics of the fast transient potassium current of neurones where roles in shaping action potential duration and frequency have been proposed. Although acinar cells do not carry action potentials, our experiments indicate that the primary regulator of the current in these cells is the membrane potential. In whole-cell patch-clamped cells we demonstrate an outward current activated by depolarization. This current was transient and inactivated over the duration of the pulse (100-500 ms). The decay of the inactivation was adequately fitted by a single exponential. The time constant of decay, tau, at a membrane potential of +20 mV was 34 +/- 0.6 ms (mean +/- SEM, n = 6) and decreased with more positive pulse potentials. The steady-state inactivation kinetics showed that depolarized holding potentials reduced the amplitude of the current observed with a half-maximal inactivation at a membrane potential of -40.6 +/- 0.33 mV (mean +/- SEM, n = 5). These activation and inactivation characteristics were not affected by low intracellular calcium (10(-10) mol.l-1) or by an increase in calcium (up to 180 nmol.l-1). In addition we found no effect on the current of dibutyryl cyclic adenosine monophosphate (db-cAMP) or the agonist acetylcholine. The current was blocked by 4-aminopyridine (Kd approximately 0.5 mmol.l-1) but not affected by 10 mmol.l-1 tetraethylammonium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Outer hair cells of the cultured organ of Corti from newborn rats (0-11 days after birth) were studied in the whole-cell patch-clamp configuration. A voltage-activated sodium current was detected in 97% (n = 109) of the cells at 0-9 days after birth. The properties of this current were: (1) its activation and inactivation kinetics were fast and voltage-dependent, (2) the voltage at half-maximum activation was -45.0 mV, (3) its steady-state inactivation was temperature-sensitive (the half-inactivating voltage was -92.6 mV at 23 degrees C and -84.8 mV at 37 degrees C), (4) the reversal potential (80 mV) was close to the sodium equilibrium potential and currents could be abolished by the removal of extracellular sodium, and (5) tetrodotoxin blocked the current with a Kd of 474 nmol/l. Current amplitudes were up to 1.7 nA at room temperature. Mean current amplitudes showed a developmental time course with a maximum at postnatal days 3 and 7 for outer hair cells from the basal and apical part of the cochlea, respectively. In current-clamp mode cells had membrane potentials of -59.7 +/- 11.7 mV (n = 9). When cells were hyperpolarized by constant current injection, depolarizing currents were able to trigger action potentials. At 18 days after birth, sodium currents were greatly reduced and barely detectable. The results show that, unlike adult outer hair cells, immature outer hair cells regularly express voltage-gated sodium channels. However, due to mismatching of the sodium current inactivation range and membrane potential in vitro, a physiological function appears questionable.  相似文献   

10.
Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half-activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least-squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.  相似文献   

11.
1. Depolarization-activated, calcium-independent potassium (K+) currents were studied with the use of whole cell voltage-clamp recording from neostriatal neurons acutely isolated from adult (> or = 4 wk old) rats. The whole cell K+ current was composed of transient and persistent components. The aims of the experiments were to isolate the persistent component and then to characterize its voltage dependence and kinetics. 2. Application of 10 mM 4-aminopyridine (4-AP) completely blocked the transient currents while reducing the persistent current by approximately 40% [50% inhibitory concentration (IC50), of blockable current = 125 microM]. The persistent K+ current also was reduced by tetraethylammonium (TEA). Two components to the TEA block were present, having IC50s of 125 microM (23% of the blockable current) and 5.9 mM (77% of the blockable current). Collectively, these results suggested that the persistent components of the total K+ current was pharmacologically heterogeneous. The properties of the 4-AP-resistant, persistent K+ current (IKrp) were subsequently studied. 3. The kinetics of activation and deactivation of IKrp were voltage dependent. Examination of the entire activation/deactivation time constant profile showed that it was bell shaped, with time constants being moderately rapid (tau approximately 50 ms) at membrane potentials corresponding to the resting potential of neostriatal cells (approximately -80 mV), becoming considerably longer (tau approximately 100 ms) at potentials near the cells' spike thresholds (approximately -45 mV), and decreasing to a minimum (tau approximately 5 ms) at potentials associated with the peak of the cells' action potentials (approximately +20 mV). The inactivation kinetics of IKrp also were voltage dependent. The time constants of inactivation varied between 1 and 8 s at potentials between -10 and +35 mV. 4. Unlike persistent K+ currents in many other cell types, IKrp activated at relatively hyperpolarized membrane potentials (approximately -70 mV). The Boltzmann function describing activation had a half-activation voltage of -13 mV and a slope factor of 12 mV. In addition, the Boltzmann function describing the voltage dependence of inactivation of IKrp had a relatively depolarized half-inactivation voltage of -55 and a large slope factor of 19 mV, indicating that this current was available over a broad range of membrane potentials (between -100 and -10 mV). 5. Neostriatal neurons recorded in vivo exhibit subthreshold shifts in membrane potential of variable duration (tens of ms to s) from a hyperpolarized resting state to a depolarized state that is limited in amplitude just below spike threshold. The voltage dependence of activation and inactivation of IKrp indicates that it will be available on depolarization from the hyperpolarized state. However, the slow activation rate of this current suggests that it will contribute little either to limiting the amplitude of the initial depolarization associated with entry into the depolarized state or to depolarizing episodes of short duration (e.g., < 50 ms). However, IKrp should limit the amplitude of membrane depolarizations associated with prolonged excursions into the depolarized state.  相似文献   

12.
Calcium currents were studied in morphologically identified pyramidal and stellate neurons acutely isolated from layer II/III of rat entorhinal cortex, using the whole-cell patch-clamp configuration. The peak amplitude of high-voltage activated current (HVA) measured at +10 mV was not different in both neuron populations with 0.94+/-0.08 nA for pyramidal and 1.03+/-0.08 nA for stellate cells. Stellate neurons had a larger capacitance (14.4+/-1. 1 pF) than pyramidal neurons (9.6+/-0.8 pF), indicating a 50% larger cell surface. Most striking was the difference between the current density in stellate (79+/-8 pA/pF) versus pyramidal neurons (113+/-13 pA/pF). The potential of half maximal inactivation was not different: -37+/-2 mV (pyramidals) and -37+/-3 mV (stellates). Half of the cells contained a low-voltage activated calcium current (LVA) with a peak amplitude that was twice as large in stellate as in pyramidal neurons (0.21+/-0.04 nA resp. 0.11+/-0.03 nA; at -50 mV). In contrast to the HVA component, the current density of the LVA component was not different between cell types (13+/-3 pA/pF vs. 13+/-2 pA/pF). This implies that the relative abundance of LVA and HVA currents in stellate and pyramidal neurons is different which could result in different firing characteristics. The potential of half maximal LVA inactivation was -88+/-4 mV (pyramidals) and -85+/-3 mV (stellates). The slope of the voltage dependent steady state inactivation was steeper in stellate (7+/-1 mV) than in pyramidal cells (10+/-2 mV).  相似文献   

13.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Whole-cell voltage clamp techniques were used to characterize the kinetics of INa in immature (P3-5) and older (P > 25) acutely isolated rat CA1 hippocampal neurones. Fast-rising and fast-inactivating currents were recorded at all stages of maturation, evocable from Vm values of -55 to -50 mV. Currents were sensitive to TTX (1 microM) and to sodium removal from the perfusate. Current density and maximum slope conductance increased with maturation. Current decay was described by two exponentials, the faster component dominating at -35 mV or more depolarized Vm values; the ratio fast/slow inactivating component decreased with maturation. The voltage-dependence of conductance was taken as an approximation of m infinity. In younger cells, V1/2 values of the steady-state inactivation (h infinity) and activation curves (m infinity) were depolarized. Shifts of h infinity and m infinity curves were accompanied by shifts in the corresponding tau h and tau m voltage-dependence curves. In younger cells, activation curves had comparatively higher slope factors (Vs), which is an indication of a lower voltage sensitivity of activation. m infinity, tau m, h infinity, and tau h parameters were used to calculate the forward and backward activation and inactivation rate constants (alpha m, beta m, alpha h and beta h). P3-5 cells had relatively higher beta m values accounting for the lower voltage sensitivity of activation. The findings are an indication of a dominant channel variety in the younger cells with a closed state higher probability. The results are consistent with lower depolarization rates previously reported in CA1 cells at early stages of maturation. Faster inactivation due to poor expression of the slower inactivating component may compensate for poorer repolarization mechanisms due to the immaturity of outward currents previously reported at early stages of maturation.  相似文献   

15.
Na+ currents in adult rat large dorsal root ganglion neurons were recorded during long duration voltage-clamp steps by patch clamping whole cells and outside-out membrane patches. Na+ current present >60 ms after the onset of a depolarizing pulse (late Na+ current) underwent partial inactivation; it behaved as the sum of three kinetically distinct components, each of which was blocked by nanomolar concentrations of tetrodotoxin. Inactivation of one component (late-1) of the whole cell current reached equilibrium during the first 60 ms; repolarizing to -40 or -50 mV from potentials of -30 mV or more positive gave rise to a characteristic increase in current (tau >/= 5 ms), attributed to removal of inactivation. A second component (late-2) underwent slower inactivation (tau > 80 ms) at potentials more positive than -80 mV, and steady-state inactivation appeared complete at -30 mV. In small membrane patches, bursts of brief openings (gamma = 13-18 pS) were usually recorded. The distribution of burst durations indicated that two populations of channel were present with inactivation rates corresponding to late-1 and late-2 macroscopic currents. The persistent Na+ current in the whole cell that extended to potentials more positive than -30 mV appeared to correspond to sporadic, brief openings that were recorded in patches (mean open time approximately 0.1 ms) over a wide potential range. None of the three types of gating described corresponded to activation/inactivation gating overlap of fast transient currents.  相似文献   

16.
Whole cell patch-clamp techniques were used to study voltage-dependent sodium (Na+), calcium (Ca2+), and potassium (K+) conductances in acutely isolated neurons from cortical layer I of adult rats. Layer I cells were identified by means of gamma-aminobutyric acid (GABA) immunocytochemistry. Positive stainings for the Ca2+-binding protein calretinin in a subset of cells, indicated the presence of Cajal-Retzius (C-R) cells. All investigated cells displayed a rather homogeneous profile of voltage-dependent membrane currents. A fast Na+ current activated at about -45 mV, was half-maximal steady-state inactivated at -66.6 mV, and recovery from inactivation followed a two-exponential process (tau1 = 8.4 ms and tau2 = 858.8 ms). Na+ currents declined rapidly with two voltage-dependent time constants, reaching baseline current after some tens of milliseconds. In a subset of cells (< 50%) a constant current level of < 65 pA remained at the end of a 90 ms step. A transient outward current (Ifast) activated approximately -40 mV, declined rapidly with a voltage-insensitive time constant (tau approximately 350 ms) and was relatively insensitive to tetraethylammonium (TEA, 20 mM). Ifast was separated into two components based on their sensitivity to 4-aminopyridine (4-AP): one was blocked by low concentrations (40 microM) and a second by high concentrations (6 mM). After elimination of Ifast by a conditioning prepulse (50 ms to -50 mV), a slow K+ current (I(KV)) could be studied in isolation. I(KV) was only moderately affected by 4-AP (6 mM), while TEA (20 mM) blocked most (> 80%) of the current. I(KV) activated at about -40 mV, declined monoexponentially in a voltage-dependent manner (tau approximately 850 ms at -30 mV), and revealed an incomplete steady-state inactivation. In addition to Ifast and I(KV), indications of a Ca2+-dependent outward current component were found. When Na+ currents, Ifast, and I(KV) were blocked by tetrodotoxin (TTX, 1 microM), 4-AP (6 mM) and TEA (20 mM) an inward current carried by Ca2+ was found. Ca2+ currents activated at depolarized potentials at about -30 mV, were completely blocked by 50 microM cadmium (Cd2+), were sensitive to verapamil (approximately 40% block by 10 microM), and were not affected by nickel (50 microM). During current clamp recordings, isolated layer I neurons displayed fast spiking behaviour with short action potentials (approximately 2 ms, measured at half maximal amplitude) of relative small amplitude (approximately 83 mV, measured from the action potential threshold).  相似文献   

17.
18.
Blocking of L-type Ca channels by highly hydrophilic dihydropyridines, NKY-722 and KV-1360, was investigated in single ventricular cells of guinea-pig hearts using the whole-cell voltage clamp technique. At a holding potential of -30 mV, NKY-722 (1-100 nM) decreased the amplitude of the L-type Ca channel current (ICa) in a concentration-dependent manner. NKY-722 did not change the time constants of the decay of ICa. In the presence of NKY-722 (1 microM), the steady-state inactivation curve was shifted toward a more negative potential (by -33.0 +/- 2.0 mV) without changing its slope factor. The use-dependent block was elicited at a pulse frequency of 3.3 Hz or more. Even after washing out the drug at -80 mV for 20 min, ICa inhibited by NKY-722 (100 nM) at -30 mV was scarcely recovered when the membrane potential was clamped back to -30 mV. A permanently charged compound KV-1360 (0.1-1 microM), a quaternary amine derivative of NKY-722, hardly affected ICa by intracellular and extracellular application. These results suggest that, in spite of the high degree of ionization (91% in the charged form at pH 7.4), the mode of the L-type Ca channel block by NKY-722 is quite similar to that by lipophilic dihydropyridines. Consequently, the neutral form of NKY-722 is the active compound and this reaches the dihydropyridine receptor by "membranous approach".  相似文献   

19.
Numerous two-cell voltage-clamp studies have concluded that the electrical conductance of mammalian cardiac gap junctions is not modulated by the transjunctional voltage (Vj) profile, although gap junction channels between low conductance pairs of neonatal rat ventricular myocytes are reported to exhibit Vj-dependent behavior. In this study, the dependence of macroscopic gap junctional conductance (gj) on transjunctional voltage was quantitatively examined in paired 3-d neonatal hamster ventricular myocytes using the double whole-cell patch-clamp technique. Immunolocalization with a site-specific antiserum directed against amino acids 252-271 of rat connexin43, a 43-kD gap junction protein as predicted from its cDNA sequence, specifically stained zones of contact between cultured myocytes. Instantaneous current-voltage (Ij-Vj) relationships of neonatal hamster myocyte pairs were linear over the entire voltage range examined (0 less than or equal to Vj less than or equal to +/- 100 mV). However, the steady-state Ij-Vj relationship was nonlinear for Vj greater than +/- 50 mV. Both inactivation and recovery processes followed single exponential time courses (tau inactivation = 100-1,000 ms, tau recovery approximately equal to 300 ms). However, Ij recovered rapidly upon polarity reversal. The normalized steady-state junctional conductance-voltage relationship (Gss-Vj) was a bell-shaped curve that could be adequately described by a two-state Boltzmann equation with a minimum Gj of 0.32-0.34, a half-inactivation voltage of -69 and +61 mV and an effective valence of 2.4-2.8. Recordings of gap junction channel currents (ij) yielded linear ij-Vj relationships with slope conductances of approximately 20-30 and 45-50 pS. A kinetic model, based on the Boltzmann relationship and the polarity reversal data, suggests that the opening (alpha) and closing (beta) rate constants have nearly identical voltage sensitivities with a Vo of +/- 62 mV. The data presented in this study are not consistent with the contingent gating scheme (for two identical gates in series) proposed for other more Vj-dependent gap junctions and alternatively suggest that each gate responds to the applied Vj independently of the state (open or closed) of the other gate.  相似文献   

20.
Exposure of cardiac myocytes to oxidant stress has been implicated in the development of reperfusion arrhythmias. Studies on the effects of free radical generating systems on the fast sodium current have suggested an increase in a "window" current. The resulting increase in sodium influx has been hypothesized to cause an intracellular sodium load that stimulates Na+, Ca2+ exchange and promotes a Ca2+ overload. To test this proposal, the time course for effects of oxidative stress on a sodium current elicited with voltage ramps was investigated in feline ventricular myocytes. No window current was observed; instead, a slowly inactivating sodium current was generated at negative voltages near the sodium threshold potential. At room temperature there were no effects of a 30-min exposure to 1 mm H2O2 on this slowly inactivating sodium current. Likewise, there were no effects of either 1 mm H2O2 or 1.5 mm t-butyl hydroperoxide on fast sodium currents recorded at cool temperatures (12-15 degrees C). Experiments were repeated with t-butyl hydroperoxide at warm temperatures (30-33 degrees C), and the fast sodium current was reduced in magnitude and the reversal potential shifted to more negative voltages. These results demonstrate a temperature dependence for the loss of the fast sodium current during exposure to t-butyl hydroperoxide. Two exponentials were fit to the decaying phase of the fast sodium current and the slow time constant of inactivation was prolonged, suggesting delayed inactivation of the sodium current. Currents elicited with a steady-state inactivation protocol suggested development of a non-inactivating component during exposure to t-butyl hydroperoxide at warm temperatures. Direct evaluation of the slowly inactivating sodium current elicited by voltage ramps at warm temperatures (33-35 degrees C), and analysed as subtraction currents to remove background leak currents, showed a gradual reduction. It is concluded that the non-inactivating component identified during analysis of the fast sodium current was not the result of enhancement of either a slowly inactivating sodium current or a window current. Thus, an increase in sodium influx through voltage-dependent sodium channels does not occur during exposure to oxidative stress, and therefore, cannot induce an intracellular sodium load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号