首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rorick-Kehn and Steinmetz (2005) (see record 2005-13804-012) report that neurons in the central and basolateral nuclei of the amygdala exhibit learning-related spike firing to conditional stimuli associated with shock in 3 different aversive conditioning paradigms: eyeblink conditioning, fear conditioning, and signaled avoidance conditioning. Central nucleus neurons responded in all 3 tasks, whereas basolateral nucleus neurons were more activated by fear and avoidance conditioning. These results reveal that amygdala neurons are differentially engaged by aversive conditioning, but questions remain concerning the associative basis and functional role for these unit responses. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
We used psychometric techniques and neurophysiological recordings to study the role of the putamen in somesthetic perception. Four monkeys were trained to categorize the speed of moving tactile stimuli. Animals performed a task in which one of two target switches had to be pressed with the right hand to indicate whether the speed of probe movement across the glabrous skin of the left, restrained hand was low or high. During the task we recorded the activity of neurons in the putamen contralateral (right) and ipsilateral (left) to the stimulated hand. We found different types of neuronal responses, all present in the right and left putamen. Some neurons responded during the stimulus period, others responded during the hand-arm movement used to indicate categorization, and others responded during both of these periods. The responses of many neurons did not vary either with the speed of the stimuli or in relation to the categorization process. In contrast, neurons of a particular type responded differentially: their activity reflected whether stimulus speed was low or high. These differential responses occurred during the stimulus and hand-arm motion periods. A number of the nondifferential and differential neurons were studied when the same stimuli used in the categorization task were delivered passively. Few neurons with nondifferential discharges, and none of the differential neurons, responded in this condition. In a visually cued control task we studied the possibility that the differential responses were associated with the intention to press or with the trajectory of the hand to one of the target switches. In this condition, a light turned on instructed the animal which target switch to press for a reward. Very few neurons in both hemispheres maintained the differential responses observed during the categorization task. Those neurons that discharged selectively for low or high speeds were analyzed quantitatively to produce a measure comparable with the psychometric function. The thresholds of the resulting neurometric curves for the neuronal populations were very similar to the psychometric thresholds. The activity of a large fraction of these neurons could be used to accurately predict whether the stimulus speed was low or high. The results indicate that the putamen, both contralateral and ipsilateral to the stimulated hand, contains neurons that discharge in response to the somesthetic stimuli during the categorization task. Those neurons that respond irrespective of the stimulus speed appear to be involved in the general sensorimotor behavior of the animal during the execution of the task. The results suggest that the putamen may play a role in bimanual tasks. The recording of neurons in the right and left putamen whose activities correlate with the speed categories suggests that this region of the basal ganglia, in addition to its role in motor functions, is also involved in the animal's decision process.  相似文献   

3.
Single unit recording in rat nucleus accumbens (NAcc) was used to ascertain NAcc neuronal activity in mediating of reward including its anticipation. Of the 103 neurons investigated, 63% showed some response in connection with the task activity. Of these, 20 units responded during delivery of the primary reward (food and/or water) and five responded during the time period preceding reward if the reward was delayed (four to food, one to water). These result suggest that NAcc neurons responded not only to the delivery of primary reward and task inducing anticipation of reward, but also represent the difference of reward quality between food and water specifically.  相似文献   

4.
Parabrachial neural coding of taste stimuli in awake rats. J. Neurophysiol. 78: 2254-2268, 1997. In awake, behaving rats, the activity of 74 single neurons in the pontine parabrachial nucleus (PBN) was recorded in response to sapid stimulation by 15 chemicals. Of these, 44 taste cells were tested with all 15 stimuli. Based on their responsiveness to 4 standard stimuli, these neurons were categorized as follows: 23 NaCl-best, 15 sucrose-best, 5 citric acid-best, and 1 quinine HCl-best. Several forms of multivariate analyses indicated that the taste responses matched both the behavioral responses to and, less well, the chemical structure of, the sapid stimuli. A hierarchical cluster analysis of the neurons substantially confirmed the best-stimulus categorization, but separated the NaCl-best cells into those that responded more to Na+-containing salts and those that responded more to Cl--containing salts. The cells that responded best to the Na+ moiety actually were somewhat more correlated with the sucrose-best cells than with those that responded to the Cl--containing stimuli. Citric acid-best neurons and the lone quinine-best unit formed a single cluster of neurons that responded well to acids, as well as to NH4Cl and, to a lesser extent, NaNO3. A factor analysis of the neuronal response profiles revealed that three factors accounted for 78.8% of the variance in the sample. Similar analyses of the stimuli suggested that PBN neurons respond to four or five sets of stimuli related by their chemical makeup or by human psychophysical reports. The capacity of rats to make these discriminations has been documented by other behavioral studies in which rodents generalize across sapid chemicals within each of 5 stimulus categories. Furthermore, a simulation analysis of the neural data replicated behavioral results that used amiloride, a Na+ channel blocker, in which rats generalized NaCl to non-Na+, Cl- salts. Thus, using a variety of analyses, in awake rats, the activity of PBN taste neurons tracks their behavioral responses to a variety of chemical stimuli.  相似文献   

5.
Previous studies have shown that the lateral nucleus of the amygdala (AL) is essential in auditory fear conditioning and that neurons in the AL respond to auditory stimuli. The goals of the present study were to determine whether neurons in the AL are also responsive to somatosensory stimuli and, if so, whether single neurons in the AL respond to both auditory and somatosensory stimulation. Single-unit activity was recorded in the AL in anesthetized rats during the presentation of acoustic (clicks) and somatosensory (footshock) stimuli. Neurons in the dorsal subdivision of the AL responded to both somatosensory and auditory stimuli, whereas neurons in the ventrolateral AL responded only to somatosensory stimuli and neurons in the ventromedial AL did not respond to either stimuli. These findings indicate that the dorsal AL is a site of auditory and somatosensory convergence and may therefore be a focus of convergence of conditioned and unconditioned stimuli (CS and UCS) in auditory fear conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
To investigate the contribution of the anterior cingulate cortex (ACC) to stimulus-reward learning, rats with lesions of peri- and postgenual ACC were tested on a variety of Pavlovian conditioning tasks. Lesioned rats learned to approach a food alcove during a stimulus predicting food, and responded normally for conditioned reinforcement. They also exhibited normal conditioned freezing and Pavlovian-instrumental transfer, yet were impaired at autoshaping. To resolve this apparent discrepancy, a further task was developed in which approach to the food alcove was under the control of 2 stimuli, only 1 of which was followed by reward. Lesioned rats were impaired, approaching during both stimuli. It is suggested that the ACC is not critical for stimulus-reward learning per se, but is required to discriminate multiple stimuli on the basis of their association with reward. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Bradykinin has been strongly implicated as a mediator of cardiac nociception. During coronary artery occlusion, the content of bradykinin in coronary sinus blood increases. In non-cardiac tissues nociception to bradykinin exhibits tachyphylaxis, however, this phenomenon has not been rigorously studied in the heart. This raises the question that repeated coronary occlusions may also result in tachyphylaxis, thereby reducing cardiac sensation on subsequent ischemic stimulation. We therefore examined the hypothesis that repetitive episodes of myocardial ischemia and of epicardial application of bradykinin demonstrate tachyphylaxis. Mongrel cats were anesthetized with alpha-chloralose and heart rate, arterial pressure, and thoracic spinal neuron firing rate were recorded during 60 s of anterior descending coronary occlusion or local epicardial application of bradykinin (10 microM). Neurons were identified by cutaneous receptive fields in the left shoulder area. Sixty-one of 93 neurons tested responded with an increase in firing rate to coronary artery occlusion only (n=24), bradykinin only (n=19) or to both (n=18). On repetitive coronary occlusion, 14 of 25 neurons demonstrated tachyphylaxis compared to 12 of 15 tested with bradykinin (p<0.05). Similar responses were observed in thoracic spinal neurons that projected to the brain. In neurons demonstrating tachyphylaxis, dorsal cervical cold block partially restored the neuronal activation to coronary occlusion but not to bradykinin. We conclude, based on neuronal responses to repetitive stimuli, that afferent spinal responses to coronary occlusion and bradykinin are different. These data suggest that bradykinin is not the sole mediator of myocardial ischemic pain. The tachyphylaxis to repeated coronary artery occlusions may contribute to the clinical phenomenon of silent myocardial ischemia.  相似文献   

8.
9.
There is some evidence that the anterior cingulate cortex (ACC) contains nociceptive neurons, and other neurons which respond to conditioned aversive stimuli. It is not implausible that nociceptive input and conditioned aversive input converge onto common neurons in the ACC. Following from this hypothesis, the psychological pain which occurs in circumstances that arouse disgust or aversion may involve the same mechanisms that give rise to referred pain.  相似文献   

10.
A population of neurons in the principal somatosensory nucleus of human thalamus (ventralis caudalis, Vc) had a significant tonic, graded response to cool stimuli and also responded to innocuous mechanical stimuli (mechanical-cool neurons). These neurons were clustered at the dorsal aspect of medial Vc. Stimulation at the sites where these neurons were recorded evoked tingling sensations in the part of the body including or adjacent to the receptive field of these neurons. These neurons may contribute to the mechanism that mediates the perception of cold in man.  相似文献   

11.
1. The primate orbitofrontal cortex receives inputs from the primary olfactory (pyriform) cortex and also from the primary taste cortex. To investigate how olfactory information is encoded in the orbitofrontal cortex, the responses of single neurons in the orbitofrontal cortex and surrounding areas were recorded during the performance of an olfactory discrimination task. In the task, the delivery of one of eight different odors indicated that the monkey could lick to obtain a taste of sucrose. If one of two other odors was delivered from the olfactometer, the monkey had to refrain from licking, otherwise he received a taste of saline. 2. Of the 1,580 neurons recorded in the orbitofrontal cortex, 3.1% (48) had olfactory responses and 34 (2.2%) responded differently to the different odors in the task. The neurons responded with a typical latency of 180 ms from the onset of odorant delivery. 3. Of the olfactory neurons with differential responses in the task, 35% responded solely on the basis of the taste reward association of the odorants. Such neurons responded either to all the rewarded stimuli, and none of the saline-associated stimuli, or vice versa. 4. The remaining 65% of these neurons showed differential selectivity for the stimuli based on the odor quality and not on the taste reward association of the odor. 5. The findings show that the olfactory representation within the orbitofrontal cortex reflects for some neurons (65%) which odor is present independently of its association with taste reward, and that for other neurons (35%), the olfactory response reflects (and encodes) the taste association of the odor. The additional finding that some of the odor-responsive neurons were also responsive to taste stimuli supports the hypothesis that odor-taste association learning at the level of single neurons in the orbitofrontal cortex enables such cells to show olfactory responses that reflect the taste association of the odor.  相似文献   

12.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

13.
Fear can be elicited by physically-presented explicit threat stimuli or by more static contextual stimuli that are not an immediate source of danger. Research in both humans and animals suggest that fear produced by these two types of stimuli represents separate processes mediated by different brain structures. The present study used the startle reflex methodology to examine affective responses elicited by an explicit threat cue signalling a period of shock anticipation and by two types of contextual stimuli; darkness and attaching the shock electrodes. As expected, shock anticipation potentiated startle (fear-potentiated startle). Startle was also facilitated by darkness and by the placement of shock electrodes. Further, darkness increased fear-potentiated startle to an explicit threat cue, but did not affect the facilitation of startle produced by attaching the shock electrodes. It is suggested that affective responses to contextual stimuli should be considered when investigating both normal and pathological fear.  相似文献   

14.
In the experiment reported in this paper, 22 of 35 neurons in the gustatory NTS were found to respond to odorant as well as taste stimuli. This odorant response was apparently mediated by the ethmoid nerve and at least one other odorant-responsive system, possibly other nasal trigeminal afferents. These gustatory neurons responded to odorants, as they did to taste stimuli, in a manner consistent with an encoding of stimulus quality information. Thus at least some of the neurons of the gustatory NTS carry information concerning several of the senses involved in ingestion.  相似文献   

15.
In our previous studies of hand manipulation task-related neurons, we found many neurons of the parietal association cortex which responded to the sight of three-dimensional (3D) objects. Most of the task-related neurons in the AIP area (the lateral bank of the anterior intraparietal sulcus) were visually responsive and half of them responded to objects for manipulation. Most of these neurons were selective for the 3D features of the objects. More recently, we have found binocular visual neurons in the lateral bank of the caudal intraparietal sulcus (c-IPS area) that preferentially respond to a luminous bar or place at a particular orientation in space. We studied the responses of axis-orientation selective (AOS) neurons and surface-orientation selective (SOS) neurons in this area with stimuli presented on a 3D computer graphics display. The AOS neurons showed a stronger response to elongated stimuli and showed tuning to the orientation of the longitudinal axis. Many of them preferred a tilted stimulus in depth and appeared to be sensitive to orientation disparity and/or width disparity. The SOS neurons showed a stronger response to a flat than to an elongated stimulus and showed tuning to the 3D orientation of the surface. Their responses increased with the width or length of the stimulus. A considerable number of SOS neurons responded to a square in a random dot stereogram and were tuned to orientation in depth, suggesting their sensitivity to the gradient of disparity. We also found several SOS neurons that responded to a square with tilted or slanted contours, suggesting their sensitivity to orientation disparity and/or width disparity. Area c-IPS is likely to send visual signals of the 3D features of an object to area AIP for the visual guidance of hand actions.  相似文献   

16.
There is growing evidence of heterogeneity among responses to bitter stimuli at the peripheral, central and behavioral levels. For instance, the glossopharyngeal (GL) nerve and neurons receiving its projections are more responsive to bitter stimuli than the chorda tympani (CT) nerve, and this is particularly true for some bitter stimuli like PROP & cycloheximide that stimulate the GL to a far greater extent. Given this information, we hypothesized that cutting the GL would have a greater effect on behavioral avoidance of cycloheximide and PROP than quinine and denatonium, which also stimulate the CT, albeit to a lesser degree than salts and acids. Forty male SD rats were divided into four surgery groups: bilateral GL transection (GLX), chorda tympani transection (CTX), SHAM surgery, and combined transection (CTX + GLX). Postsurgical avoidance functions were generated for the four bitter stimuli using a brief-access test. GLX significantly compromised avoidance compared to both CTX and SHAM groups for all stimuli (p  相似文献   

17.
In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.  相似文献   

18.
12 normal New Zealand white rabbits and 12 with septal lesions received classical differential conditioning of the nictitating membrane response (NMR), followed by auditory generalization tests run in extinction. Although rate of acquisition and asymptotic responding to positive conditioned stimuli did not differ, septals responded more than normals to nonreinforced stimuli. Resultant decrements in differential conditioning could not be attributed to changes in auditory or shock thresholds or to increased spontaneous NMRs. Septals also responded at higher rates in both operant conditioning (barpresses reinforced with food pellets on a variable interval schedule) and extinction sessions. No difference in suppression in a passive avoidance task was found. Results are discussed in relation to R. A. McCleary's (1966) response disinhibition analysis of septal function, and an habituation hypothesis is considered. (31 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Experiments concerning the aversive properties of time-out (TO) from positive reinforcement are reviewed. A discussion of experimental designs employed and problems encountered in defining aversive stimuli precedes the review. The major topics covered are: avoidance of TO, escape from TO, escape from stimuli which previously signalled TO, punishment with TO, effects on ongoing behavior of pre-TO stimuli, escape from conditions of positive reinforcement into TO. In general, TO satisfied sufficient criteria to conclude that it belongs to the class of stimuli called "aversive." However, this conclusion is only tentative. (2 p. ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Prostaglandins sensitize some nociceptors to noxious mechanical, thermal and chemical stimuli; however, not all nociceptors are sensitized by prostaglandins. We used cultures of dorsal root ganglion neurons from neonatal rats to determine whether prostaglandins differentially alter the responsiveness of populations of neurons to the chemical stimulus bradykinin. Groups of dorsal root ganglion neurons were defined by size of the cell soma and by the presence of immunoreactivity for substance P. An increase in the concentration of free intracellular Ca2+ was used as an indicator of responsiveness to bradykinin. Pretreatment (5 min) with prostaglandin E2 (100 nM) increased the proportion of intermediate-size neurons (somal areas of 240-320 microns2) that responded to 30 nM bradykinin by two-fold but did not alter the proportion of small-size neurons (somal areas of 160-239 microns2) that responded. Pretreatment with prostaglandin E2 had no effect on the maximum increase in free intracellular Ca2+ evoked by 30 nM bradykinin in either population of neurons, defined by size. Although pretreatment with PGE2 did not increase the proportion of intermediate-size neurons that responded to a lower concentration of bradykinin (3 nM), it did increase the concentration of free intracellular Ca2+ evoked by 3 nM bradykinin. Both results were consistent with a leftward shift in the stimulus-response relationship for bradykinin following pretreatment with PGE2. Small- and intermediate-size neurons that responded to bradykinin also differed in their expression of immunoreactivity for substance P. Furthermore, intermediate-size neurons that expressed immunoreactivity for substance P were more likely to respond to bradykinin after treatment with prostaglandin E2. These results support the hypothesis that prostaglandin E2 sensitizes some normally unresponsive primary afferent neurons to chemical stimuli. One population of neurons which becomes responsive to bradykinin after treatment with prostaglandin E2 can be defined based on cell size, and furthermore, these neurons are likely to express substance P. During inflammation, recruitment of primary afferent neurons that are immunoreactive for substance P would enhance the participation of substance P in central mechanisms that contribute to hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号