首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Doppler data generated with the Galileo spacecraft's radio carrier wave during two Europa encounters on 19 December 1996 (E4) and 20 February 1997 (E6) were used to measure Europa's external gravitational field. The measurements indicate that Europa has a predominantly water ice-liquid outer shell about 100 to 200 kilometers thick and a deep interior with a density in excess of about 4000 kilograms per cubic meter. The deep interior could be a mixture of metal and rock or it could consist of a metal core with a radius about 40 percent of Europa's radius surrounded by a rock mantle with a density of 3000 to 3500 kilograms per cubic meter. The metallic core is favored if Europa has a magnetic field.  相似文献   

2.
Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.  相似文献   

3.
On 19 December 1996 as Galileo passed close to Jupiter's moon, Europa, the magnetometer measured substantial departures from the slowly varying background field of Jupiter's magnetosphere. Currents coupling Europa to Jupiter's magnetospheric plasma could produce perturbations of the observed size. However, the trend of the field perturbations is here modeled as the signature of a Europa-centered dipole moment whose maximum surface magnitude is approximately 240 nanotesla, giving a rough upper limit to the internal field. The dipole orientation is oblique to Europa's spin axis. This orientation may not be probable for a field generated by a core dynamo, but higher order multipoles may be important as they are at Uranus and Neptune. Although the data can be modeled as contributions of an internal field of Europa, they do not confirm its existence. The dipole orientation is also oblique to the imposed field of Jupiter and thus not directly produced as a response to that field. Close to Europa, plasma currents appear to produce perturbations with scale sizes that are small compared with a Europa radius.  相似文献   

4.
对内埋式永磁同步电机直接转矩控制系统特性进行了深入研究.针对内埋式永磁同步电机直接转矩控制存在较大脉动转矩的缺点,提出了一种新的永磁同步电机直接转矩控制策略.以减小转矩脉动为目标引入模糊逻辑思想,将磁链偏差和磁链偏差的变化率进行了合理的模糊分级,模糊调节选择电压矢量和反电压矢量作用时间.这种方法可以保持恒定的开关频率并有效地减小转矩脉动.为了获得高性能的无速度传感器内埋式永磁同步电机控制系统,设计了一种无速度传感器方案.最后,通过仿真验证了所提控制策略的有效性.  相似文献   

5.
Roughened implant surfaces are thought to enhance osseointegration. Torque removal forces have been used as a biomechanical measure of anchorage or osseointegration in which the greater forces required to remove implants may be interpreted as an increase in the strength of osseointegration. The purpose of this study was to compare the torque resistance to removal of screw shaped titanium implants having an acid etched (HC1/H2SO4) surface (Osseotite) with implants having a machined surface. Two custom screw shaped implants, 1 acid etched and the other machined, were placed into the distal femurs of 10 adult New Zealand White rabbits. These implants were 3.25 mm in diameter x 4.00 mm in length without holes, grooves or slots to resist rotation. Following a 2 month healing period, the implants were removed under reverse torque rotation with a digital torque measuring device. Two implants with the machined surface preparation failed to achieve osseointegration. All other implants were found to be anchored to bone. Resistance to torque removal was found to be 4 x greater for the implants with the acid etched surface as compared to the implants with the machined surface. The mean torque values were 20.50 +/- 6.59 N cm and 4.95 +/- 1.61 N cm for the acid etched and machined surfaces respectively. The results of this study suggest that chemical etching of the titanium implant surface significantly increases the strength of osseointegration as determined by resistance to reverse torque rotation.  相似文献   

6.
Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other stochastic causalities, such as selective amplification of noise and marginal stability. These theories apply capillarity physics as a boundary condition on the transport fields in the melt that conduct the latent heat and/or move solute rejected during solidification. Predictions based on these theories conflict with the best quantitative experiments on model solidification systems. Moreover, neither the observed branching patterns nor other characteristics of dendrites formed in different molten materials are distinguished by these approaches, making their integration with casting and microstructure models of limited value. The case of solidification from a pure melt is reexamined, allowing instead the capillary temperature distribution along a prescribed sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium temperature is shown to be much more than a boundary condition on the transport field; it acts, in fact, as an independent energy field during crystal growth and produces profound effects not recognized heretofore. Specifically, one may determine by energy conservation that weak normal fluxes are released along the interface, which either increase or decrease slightly the local rate of freezing. Those responses initiate rotation of the interface at specific locations determined by the surface energy and the shape. Interface rotations with proper chirality, or rotation sense, couple to the external transport field and amplify locally as side branches. A precision integral equation solver confirms through dynamic simulations that interface rotation occurs at the predicted locations. Rotations points repeat episodically as a pattern evolves until the dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic repeating dendritic pattern develops. Interface rotation is the fundamental mechanism responsible for dendritic branching.  相似文献   

7.
Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other stochastic causalities, such as selective amplification of noise and marginal stability. These theories apply capillarity physics as a boundary condition on the transport fields in the melt that conduct the latent heat and/or move solute rejected during solidification. Predictions based on these theories conflict with the best quantitative experiments on model solidification systems. Moreover, neither the observed branching patterns nor other characteristics of dendrites formed in different molten materials are distinguished by these approaches, making their integration with casting and microstructure models of limited value. The case of solidification from a pure melt is reexamined, allowing instead the capillary temperature distribution along a prescribed sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium temperature is shown to be much more than a boundary condition on the transport field; it acts, in fact, as an independent energy field during crystal growth and produces profound effects not recognized heretofore. Specifically, one may determine by energy conservation that weak normal fluxes are released along the interface, which either increase or decrease slightly the local rate of freezing. Those responses initiate rotation of the interface at specific locations determined by the surface energy and the shape. Interface rotations with proper chirality, or rotation sense, couple to the external transport field and amplify locally as side branches. A precision integral equation solver confirms through dynamic simulations that interface rotation occurs at the predicted locations. Rotations points repeat episodically as a pattern evolves until the dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic repeating dendritic pattern develops. Interface rotation is the fundamental mechanism responsible for dendritic branching.  相似文献   

8.
Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofuran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofuran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofuran when compared to untreated soils. Disappearance rates of [14C-URL (uniformly ring labeled)] carbofuran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

9.
Rotation of the bacterial flagellar motor is powered by a transmembrane gradient of protons or, in some species, sodium ions. The molecular mechanism of coupling between ion flow and motor rotation is not understood. The proteins most closely involved in motor rotation are MotA, MotB, and FliG. MotA and MotB are transmembrane proteins that function in transmembrane proton conduction and that are believed to form the stator. FliG is a soluble protein located on the cytoplasmic face of the rotor. Two other proteins, FliM and FliN, are known to bind to FliG and have also been suggested to be involved to some extent in torque generation. Proton (or sodium)-binding sites in the motor are likely to be important to its function and might be formed from the side chains of acidic residues. To investigate the role of acidic residues in the function of the flagellar motor, we mutated each of the conserved acidic residues in the five proteins that have been suggested to be involved in torque generation and measured the effects on motility. None of the conserved acidic residues of MotA, FliG, FliM, or FliN proved essential for torque generation. An acidic residue at position 32 of MotB did prove essential. Of 15 different substitutions studied at this position, only the conservative-replacement D32E mutant retained any function. Previous studies, together with additional data presented here, indicate that the proteins involved in motor rotation do not contain any conserved basic residues that are critical for motor rotation per se. We propose that Asp 32 of MotB functions as a proton-binding site in the bacterial flagellar motor and that no other conserved, protonatable residues function in this capacity.  相似文献   

10.
This article proposes a simple and fast method of induction heating and quenching to produce surface gradient structure for S38C steel, and its mechanical behavior and strengthening mechanism are revealed. The variation of the gradient structure from surface to interior is characterized by electron backscatter diffraction, and the tensile behavior of the gradient structure at different depths is acknowledged by the small-scale tensile tests. The gradient structure is tempered martensite microstructure, which significantly improves the hardness and tensile strength of surface and subsurface regions. Accordingly, with the strengthening of the gradient structure, the general tensile strength and fatigue behavior of the S38C steel are increased close to those of high-strength steel. Moreover, the fatigue crack initiation mechanism of the gradient structure is studied by energy dispersive spectroscopy, transmission Kikuchi diffraction, and transmission electron microscope characterization on the crack initiation regions. It reveals that the fatigue failure of the gradient structure can be due to stress concentration on the surface and around subsurface inclusions, and the crack initiation modes present surface crack initiation and internal crack initiation, respectively.  相似文献   

11.
The purpose of this study was to determine whether a 4-week isotonic resistance training program using Theraband elastic tubing and lightweight dumbbells would significantly increase concentric shoulder rotator strength or velocity of serve or both in a group of elite-level tennis players. Twenty-two male and female varsity college tennis players were randomly assigned to control or 4-week training groups. Subjects were pre- and posttested in concentric internal and external rotation torque using an isokinetic dynamometer. Functional performance was assessed before and after training by recording the peak and average velocities of eight maximal serves. The experimental group exhibited significant gains in internal rotation torque at both slow (120 deg/sec) and fast speeds (300 deg/sec) for total work and in peak torque to body weight ratio and torque acceleration energy at the fast speed. This group also exhibited significant gains in external rotation torque for the same parameters at fast speed. Regarding speed to serve, the experimental group exhibited significantly greater increase in peak speed (+6.0% compared with -1.8%) and average speed (+7.9% compared with -2.3%) compared with the control group. Men exhibited greater internal and external rotation torque on all parameters and in peak and mean speed of serve on both evaluations. Men also exhibited greater imbalance in external to internal rotation torque ratios. In conclusion, resistance training using Theraband tubing and lightweight dumbbells may have beneficial effects on strength and functional performance in college-level tennis players.  相似文献   

12.
Fatigue potential has been studied in cast aluminum alloys with regard to the fatigue crack initiation mechanism at the casting defects, particularly surface and subsurface defects. The significance of facets is interpreted as the presence of defects in the interior of castings. Furthermore, two varieties of facets have been identified, one originating as a dendrite-straightened bifilm (type I facet) and the other originating from a slip plane mechanism around casting defects (type II facet). The fatigue life potential of castings is reexamined based on the involvement of defects during the formation of both types of facets. It is proposed that the true fatigue life potential of defect free castings has yet to be observed, i.e., if castings can be produced without defects, then their fatigue performance will be significantly higher than even the best performances observed so far.  相似文献   

13.
A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated approximately 4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.  相似文献   

14.
In this paper, we present a three step method for characterizing geologic deposits for liquefaction potential using sample based liquefaction probability values. The steps include statistically characterizing the sample population, evaluating the spatial correlation of the population, and finally providing a local and/or global estimate of the distribution of high liquefaction probability values for the deposit. When spatial correlation is present, ordinary kriging can be used to evaluate spatial clustering of high liquefaction probability values within a geologic unit which in turn can be used in a regional liquefaction potential characterization. If spatial correlation is not present in the data, then a global estimate can be used to estimate the percentage of samples within the deposit which have a high liquefaction probability. By describing the liquefaction potential with a binomial distribution (high versus low), a global estimate can provide an estimate of the mean as well as uncertainty in the estimate. To demonstrate the method, we used a dense data set of subsurface borings to identify and characterize liquefiable deposits for hazard mapping in Cambridge, Mass.  相似文献   

15.
The influence of the microstructure on density on the resistance to subsurface and surface damage, during lubricated rolling–sliding wear of a 1.5%Mo–2%Cu–0.65%C sintered and sinterhardened steel, was investigated. The nucleation of subsurface contact fatigue cracks and the occurrence of surface plastic deformation due to surface stresses were studied through a theoretical analysis and confirmed through wear tests. The expected positive effect of density and sinterhardening was confirmed. Moreover, the resistance of the steel to the two damage mechanisms investigated depends on the microstructural heterogeneity. The theoretical model for subsurface and for surface damage may be used to predict the resistance of the material but, depending on the distribution of the microstructural constituents, either a local or a mean approach in defining the properties of the metallic matrix has to be used.  相似文献   

16.
冷连轧轧制过程中,当轧制转矩大于轧辊与轧件间的极限静摩擦力矩时,轧辊与轧件之间将出现相对滑动,从而导致打滑的发生.为减少因打滑导致的冷轧带钢带钢表面缺陷,以板带轧制塑性变形基本公式为基础,将前滑区与后滑区的单位轧制力分布做线性简化,继而推导出极限静摩擦力矩模型.并以实测数据验证该模型的准确性,且从轧制转矩与极限静摩擦力...  相似文献   

17.
Grinding is a key step on the manufacturing process of WC–Co cemented carbides (hardmetals). In this work, an investigation of grinding effects on the surface integrity of hardmetals is conducted. It is done by combining diverse advanced characterisation techniques: X-ray diffraction, field emission-scanning electron microscopy, electron back scatter diffraction, focused ion beam – 3D tomography and transmission electron microscopy. The study is carried out in a fine-grained WC–Co grade. Besides ground state, polished surface finish condition is assessed for comparison purposes. It is evidenced that grinding induces significant alterations: 3D tomography illustrates microcracking exists down to 2.5?μm depth with a highly anisotropic distribution at the subsurface, large compressive residual stresses extending until subsurface levels of about 12?μm, and phase transformation of binder from the original fcc phase into the hcp one, as well as severe plastic deformation observed within the binder at the surface level.

Invited keynote papers from EuroPM2017, Milan.  相似文献   

18.
 利用光学显微镜、扫描电镜和能谱仪分析了齿轮钢矩形坯皮下裂纹的特征及成因。结果表明:皮下裂纹产生于矩形坯铸坯侧面,距离表面1~5mm,具有明显位置性;结晶器中钢液凝固前沿聚集的Al2O3夹杂物是皮下裂纹形成的主要原因;改变浸入式水口类型和控制钢水过热度可以改善结晶器中夹杂物分布和促进夹杂物上浮,避免皮下裂纹的产生,同时防止了棒材表面线纹的发生。  相似文献   

19.
The rigid fixation of bone fragments by compression osteosynthesis with plate produces a high degree of resistance against bending forces, and over the surface friction against rotatory movements. In this way, a uniform distribution of pressure extending over the whole bone section is effected. But by virtue of the asymmetric positioning of the plate on bone-shaft, a torque effect is caused when strain is applied bringing about a distraction of the cortex on the side opposite the plate. Human femoral and tibial specimens would be osteomatized and then stabilized with AO plate adapted to conform to the surface of the bones, under a tension of 70 and 140 kp. With narrow plates having a inferior rigidity there is a greater distraction than is the cause with the wide plates. To compensate against the torque effect, the plates would be prebent. Two measuring methods would be investigate by which the correlation between prestraining and prebending could be determined. To achieve a constant distribution of pressure the narrow plates would have to be prebent to a greater degree than the wide ones, and the DC plates more than the standard plates.  相似文献   

20.
Current reinforced earth structure designs arbitrarily distinguish between reinforced walls and slopes, that is, the batter of walls is 20° or less while in slopes it is larger than 20°. This has led to disjointed design methodologies where walls employ a lateral earth pressure approach and slopes utilize limit equilibrium analyses. The earth pressure approach used is either simplified (e.g., ignoring facing effects), approximated (e.g., considering facing effects only partially), or purely empirical. It results in selection of a geosynthetic with a long-term strength that is potentially overly conservative or, by virtue of ignoring statics, potentially unconservative. The limit equilibrium approach used in slopes deals explicitly with global equilibrium only; it is ambiguous about the load in individual layers. Presented is a simple limit equilibrium methodology to determine the unfactored global geosynthetic strength required to ensure sufficient internal stability in reinforced earth structures. This approach allows for seamless integration of the design methodologies for reinforced earth walls and slopes. The methodology that is developed accounts for the sliding resistance of the facing. The results are displayed in the form of dimensionless stability charts. Given the slope angle, the design frictional strength of the soil, and the toe resistance, the required global unfactored strength of the reinforcement can be determined using these charts. The global strength is then distributed among individual layers using three different assumed distribution functions. It is observed that, generally, the assumed distribution functions have secondary effects on the trace of the critical slip surface. The impact of the distribution function on the required global strength of reinforcement is minor and exists only when there is no toe resistance, when the slope tends to be vertical, or when the soil has low strength. Conversely, the impact of the distribution function on the maximum unfactored load in individual layers, a value which is typically used to select the geosynthetics, can result in doubling its required long-term strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号