首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of Escherichia coli O157:H7 in fruit juices such as apple cider is necessary for diagnosis of infection and epidemiological investigations. However, inhibitors in the apple cider, such as endogenous polyphenols and acids, often decrease the sensitivity of PCR assays and immunoassays, thus routinely requiring laborious cell separation steps to increase the sensitivity. In the current study, polyethylene glycol (PEG)-derivatized liposomes encapsulating sulforhodamine B were tagged with anti-E. coli O157:H7 antibodies and used in an immunoliposome sandwich assay for the detection of E. coli O157:H7 in apple cider. Even without prior separation, this assay can detect E. coli O157:H7 in apple cider samples inoculated with as few as 1 CFU/ml after an 8-h enrichment period. The lower limit of detection in pure cultures without enrichment was 7 x 10(3) CFU/ml (280 CFU/40-microl sample). PEGylated immunoliposomes are suitable as an analytical reagent for the detection of E. coli O157:H7 in fruit juices containing polyphenols.  相似文献   

2.
The behavior of Escherichia coli O157:H7 in Granny Smith, Gala, Empire, McIntosh, Red Delicious, and Golden Delicious apple juice with or without supplementation with 5 or 10 mM vanillic acid was examined over a storage period of 7 days at 4 and 15 degrees C. The consequences of supplementation on sensory difference and preference were also determined by triangle testing. Juices made from the six apple cultivars had pH values ranging between pH 3.13 and 3.92. Vanillic acid exerted a concentration, pH, and time-dependent lethal effect toward E. coli O157:H7 in unpasteurized apple juice. Supplementation with 10 mM vanillic acid led to a 5-logarithm reduction in populations after 7 days at both temperatures, but sensory analysis revealed significant differences from and preference for unsupplemented juices. Supplementation with 5 mM vanillic acid accelerated death of E. coli O157:H7, but population reductions ranged from 5 log CFU/ml in low pH juices to none in high pH juices, particularly at 4 degrees C. No sensory difference or preference was detected in two of the six juices at this level of supplementation.  相似文献   

3.
Many studies have demonstrated that high voltage pulsed electric field (PEF) treatment has lethal effects on microorganisms including Escherichia coli O157:H7; however, the survival of this pathogen through the PEF treatment is not fully understood. Fresh apple cider samples inoculated with E. coli O157:H7 strain EC920026 were treated with 10, 20, and 30 instant charge reversal pulses at electric field strengths of 60, 70, and 80 kV/cm, at 20, 30, and 42 degrees C. To accurately evaluate the lethality of apple cider processing steps, counts were determined on tryptic soy agar (TSA) and sorbitol MacConkey agar (SMA) to estimate the number of injured and uninjured E. coli O157:H7 cells after PEF treatment. Cell death increased significantly with increased temperatures and electric field strengths. A maximum of 5.35-log10 CFU/ml (P < 0.05) reduction in cell population was achieved in samples treated with 30 pulses and 80 kV/cm at 42 degrees C. Cell injury measured by the difference between TSA and SMA counts was found to be insignificant (P > 0.05). Under extreme conditions, a 5.91-log10 CFU/ml reduction in cell population was accomplished when treating samples with 10 pulses and 90 kV/cm at 42 degrees C. PEF treatment, when combined with the addition of cinnamon or nisin, triggered cell death, resulting in a reduction in E. coli O157:H7 count of 6 to 8 log10 CFU/ml. Overall, the combination of PEF and heat treatment was demonstrated to be an effective pasteurization technique by sufficiently reducing the number of viable E. coli O157:H7 cells in fresh apple cider to meet U.S. Federal Drug Administration recommendations.  相似文献   

4.
The effects of pH, depth of food medium and ultraviolet (UV) light dose on the inactivation of Escherichia coli O157:H7 in UV‐opaque products such as apple juice (pH 3.5) and egg white (pH 9.1) were investigated. The applied UV dose ranged from 0 to 6.5 mW min cm?2, while the depths of the medium were 1, 3.5, 5 and 10 mm. The pH of the medium did not affect the inactivation of E coli O157:H7, since similar inactivation characteristics were obtained for both apple juice and liquid egg white. As expected, decreasing the depth of the medium increased the inactivation of E coli O157:H7. More than a 5‐log reduction was obtained when the fluid depth and UV dose were 1 mm and 6.5 mW min cm?2 respectively. However, less than a 1‐log reduction was obtained when the fluid depth was 10 mm. A two‐phase kinetic model was used to model the inactivation of E coli O157:H7. This model indicated that at higher fluid depths the inactivation rate was controlled by the second, slower inactivation phase, resulting in a lower overall inactivation. The visual appearance of the treated apple juice and egg white did not show any discolouration changes during 4 weeks of storage at ambient temperature (25 °C). Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Outbreaks of foodborne illness from apple cider have prompted research on the survival of Escherichia coli O157:H7 in this food. Published results vary widely, potentially due to differences in E. coli O157:H7 strains, enumeration media, and other experimental considerations. We developed probability distribution functions for the change in concentration of E. coli O157:H7 (log CFU/day) in cider using data from scientific publications for use in a quantitative risk assessment. Six storage conditions (refrigeration [4 to 5 degrees C]; temperature abuse [6 to 10 degrees C]; room temperature [20 to 25 degrees C]; refrigerated with 0.1% sodium benzoate, 0.1% potassium sorbate, or both) were modeled. E. coli survival rate data for all three unpreserved cider storage conditions were highly peaked, and these data were fit to logistic distributions: ideal refrigeration, logistic (-0.061, 0.13); temperature abuse, logistic (-0.0982, 0.23); room temperature, logistic (-0.1, 0.29) and uniform (-4.3, -1.8), to model the very small chance of extremely high log CFU reductions. There were fewer published studies on refrigerated, preserved cider, and these smaller data sets were modeled with beta (4.27, 2.37) x 2.2 - 1.6, normal (-0.2, 0.13), and gamma (1.45, 0.6) distributions, respectively. Simulations were run to show the effect of storage on E. coli O157:H7 during the shelf life of apple cider. Under every storage condition, with and without preservatives, there was an overall decline in E. coli O157:H7 populations in cider, although a small fraction of the time a slight increase was seen.  相似文献   

6.
Two Escherichia coli O157:H7 strains, SEA 13 B88 gfp 73ec and B6-914 gfp 90ec, together with two bacteria, three yeasts, and two molds that were randomly selected from a collection of microorganisms found on apples or in apple cider, were inoculated into apple cider and subjected to electron beam irradiation at several doses between 0.0 and 2.3 kGy at the Iowa State University Linear Accelerator Facility. The D-values for the E. coli O157:H7 strains ranged between 0.25 and 0.34 kGy; the D-values for most of the normal flora from apples ranged between 0.24 and 0.59 kGy. By taking into account possible variations in treatment conditions, it was calculated that irradiation at 2.47 kGy should achieve a 5-log reduction of E. coli O157:H7 in apple cider at the 95% confidence level. Naturally occurring yeasts might survive such irradiation treatment.  相似文献   

7.
The objective was to determine the effect of cider composition on the heat resistance of Escherichia coli O157:H7. The average D52 value in a model Empire apple juice was 18 min with a z value of 4.8 degrees C. Increasing the Brix from 11.8 to 16.5 degrees had no effect on thermal resistance, while increasing L-malic acid from 0.2 to 0.8%, or reducing the pH from 4.4 to 3.6 sensitized the cells to heat. The greatest effect on heat resistance was afforded by the preservatives benzoic and sorbic acids: D50 values in ciders containing 1,000 mg/l were 5.2 min in the presence of sorbic acid and only 0.64 min in the presence of benzoic acid. Commercial apple juice concentrates yielded lower numbers of survivors than single-strength juices even though their higher sugar concentrations of about 46 degrees Brix increased heat resistance.  相似文献   

8.
Time and temperature pasteurization conditions common in the Wisconsin cider industry were validated using a six-strain cocktail of Escherichia coli O157:H7 and acid-adapted E. coli O157:H7 in pH- and degrees Brix-adjusted apple cider. Strains employed were linked to outbreaks (ATCC 43894 and 43895, C7927, and USDA-FSIS-380-94) or strains engineered to contain the gene for green fluorescent protein (pGFP ATCC 43894 and pGFP ATCC 43889) for differential enumeration. Survival of Salmonella spp. (CDC 0778. CDC F2833, and CDC H0662) and Listeria monocytogenes (H0222, F8027, and F8369) was also evaluated. Inoculated cider of pH 3.3 or 4.1 and 11 or 14 degrees Brix was heated under conditions ranging from 60 degrees C for 14 s to 71.1 degrees C for 14 s. A 5-log reduction of nonadapted and acid-adapted E. coli O157:H7 was obtained at 68.1 degrees C for 14 s. Lower temperatures, or less time at 68.1 degrees C, did not ensure a 5-log reduction in E. coli O157:H7. A 5-log reduction was obtained at 65.6 degrees C for 14 s for Salmonella spp. L. monocytogenes survived 68.1 degrees C for 14 s, but survivors died in cider within 24 h at 4 degrees C. Laboratory results were validated with a surrogate E coli using a bench-top plate heat-exchange pasteurizer. Results were further validated using fresh unpasteurized commercial ciders. Consumer acceptance of cider pasteurized at 68.1 degrees C for 14 s (Wisconsin recommendations) and at 71.1 degrees C for 6 s (New York recommendations) was not significantly different. Hence, we conclude that 68.1 degrees C for 14 s is a validated treatment for ensuring adequate destruction of E. coli O157:H7, Salmonella spp., and L. monocytogenes in apple cider.  相似文献   

9.
Efficacy of acidified sodium chlorite for reducing the population of Escherichia coli O157:H7 pathogens on Chinese cabbage leaves was evaluated. Washing leaves with distilled water could reduce the population of E. coli O157:H7 by approximately 1.0 log CFU/g, whereas treating with acidified chlorite solution could reduce the population by 3.0 log CFU/g without changing the leaf color. A similar level of reduction was achieved by washing with sodium chlorite solution containing various organic acids. However, acidified sodium chlorite in combination with a mild heat treatment reduced the population by approximately 4.0 log CFU/g without affecting the color, but it softened the leaves. Moreover, the efficacy of the washing treatment was similar at low (4 degrees C) and room (25 degrees C) temperatures, indicating that acidified sodium chloride solution could be useful as a sanitizer for surface washing of fresh produce.  相似文献   

10.
We carried out a study to assess the risk associated with the presence of Shiga toxigenic Escherichia coli (STEC) in informally marketed unpasteurized milk in urban East Africa. Data for the risk models were obtained from on-going and recently completed studies in Kenya and Uganda. Inputs for the model were complemented with data from published literature in similar populations. A fault-tree scenario pathway and modular process risk model approach were used for exposure assessment. Hazard characterization was based on a socioeconomic study with dose-responses derived from the literature. We used a probabilistic approach with Monte Carlo simulation and inputs from farm and household surveys. The qualitative analysis suggested a low to moderate risk of infection from consuming milk and that the widespread consumer practice of boiling milk before consumption was an important risk mitigator. Quantitative analysis revealed that two to three symptomatic STEC infections could be expected for every 10,000 unpasteurized milk portions consumed, with a possible range of 0 to 22 symptomatic cases. Sensitivity analyses to assess the uncertainty and variability associated with the model revealed that the factor with the greatest influence on disease incidence was the prevalence of STEC in dairy cattle. Risk assessment is a potentially useful method for managing food safety in informal markets.  相似文献   

11.
The antibacterial effect of low concentrations of monocaprylin on Escherichia coli O157:H7 in apple juice was investigated. Apple juice alone (control) or containing 2.5 mM (0.055%) or 5 mM monocaprylin was inoculated with a five-strain mixture of E. coli O157:H7 at approximately 6.0 log CFU/ml. The juice samples were stored at 23 or 4 degrees C for 14 or 21 days, respectively, and the population of E. coli O157:H7 was determined on tryptic soy agar plates supplemented with 0.6% yeast extract. At both storage temperatures, the population of E. coli O157:H7 in monocaprylin-supplemented juice samples was significantly lower (P < 0.05) than that in the control samples. The concentration of monocaprylin and the storage temperature had a significant effect on the inactivation of E. coli O157:H7 in apple juice. Monocaprylin at 5 mM was significantly more effective than 2.5 mM monocaprylin for killing E. coli O157:H7 in apple juice. Inactivation of E. coli O157:H7 by monocaprylin was more pronounced in juice stored at 23 degrees C than in the refrigerated samples. Results of this study indicated that monocaprylin is effective for killing E. coli O157:H7 in apple juice, but detailed sensory studies are needed to determine the organoleptic properties of apple juice containing monocaprylin.  相似文献   

12.
Escherichia coli O157:H7 has become a concern within the apple cider industry. The purpose of this study was to screen several essential oils and isolated components for antimicrobial activity against E. coli O157:H7 in tryptic soy broth at neutral and acidic pH and to assess the effect of these additives on the D-value of E. coli O157:H7 in apple cider in combination with mild heat treatments. Cinnamon oil and clove oil strongly inhibited the growth of E. coli O157:H7 at neutral and acidic pH, (R)-(-)-carvone and (S)-(-)-perillaldehyde were moderately inhibitory at both pH 7.2 and pH 4.5, and citral and geraniol displayed moderate activity at pH 4.5 only. Lemon oil, methyl jasmonate, and p-anisaldehyde displayed little or no antibacterial activity. A synergistic effect between the essential oils and the lower pH of the growth medium was evident by consistently lower MICs at pH 4.5. Cinnamon and clove oils (0.01%, vol/vol) were further tested in apple cider in combination with mild heat treatments for the practical control of E. coli O157:H7 in apple cider. The addition of either essential oil resulted in lower D-values than those for cider alone, suggesting a synergistic effect and the potential efficacy of a mild heat treatment for apple cider.  相似文献   

13.
Efficacy of Ozone Against Escherichia coli O157:H7 on Apples   总被引:5,自引:0,他引:5  
Apples were inoculated with Escherichia coli O157:H7 and treated with ozone. Sanitization treatments were more effective when ozone was bubbled during apple washing than by dipping apples in pre‐ozonated water. The corresponding decreases in counts of E. coli O157:H7 during 3‐min treatments were 3.7 and 2.6 log10 CFU on apple surface, respectively, compared to < 1 log10 CFU decrease in the stem‐calyx region in both delivery methods. Optimum conditions for decontamination of whole apples with ozone included a pretreatment with a wetting agent, followed by bubbling ozone for 3 min in the wash water, which decreased the count of E. coli O157:H7 by 3.3 log10CFU/g.  相似文献   

14.
The effect of pH modification and preservative addition in apple cider on the heat resistance of Escherichia coli O157:H7 was investigated. E. coli O157:H7 and various amounts of potassium sorbate (0 to 0.2%), sodium benzoate (0 to 0.2%), and malic acid (0 to 1%) were added to apple cider. Thermal inactivation experiments were performed at 47, 50, and 53 degrees C, and D- and z-values were calculated. In apple cider without additives, the D-value at 50 degrees C (D50) was about 65 min, but addition of preservatives and malic acid significantly (P < 0.01) decreased D-values. D50-values decreased to 13.9 min in cider with 0.5% malic acid, 13.2 min with 0.1% sorbate, and 7.0 min with 0.1% benzoate added. Addition of both sorbate and malic acid had similar effects as either one alone, thus additive effects were not present. However, addition of both 0.2% benzoate and 1% malic acid did show additive effects, lowering D50 to 0.3 min. Addition of all three components (0.2% sorbate, 0.2% benzoate, and 1% malic acid) resulted in a D50 = 18 s. The z-value of cider without additives was about 6 degrees C, whereas z-values of cider containing malic acid, benzoate, and/or sorbate ranged from about 6 degrees C to 26 degrees C. This increase may result in a longer 5-log reduction time at higher temperatures (i.e., 70 degrees C) in cider with benzoate as compared to cider without additives.  相似文献   

15.
The objective of this study was to determine the survival and growth characteristics of Escherichia coli O157:H7 in whey. A five-strain mixture of E. coli O157:H7 was inoculated into 100 ml of fresh, pasteurized or unpasteurized Cheddar cheese whey (pH 5.5) at 10(5) or 10(2) CFU/ml, and stored at 4, 10 or 15 degrees C. The population of E. coli O157:H7 (on Sorbitol MacConkey agar supplemented with 0.1% 4-methylumbelliferyl-beta-D-glucuronide) and lactic acid bacteria (on All Purpose Tween agar) were determined on days 0, 1, 4, 7, 14, 21 and 28. At all storage temperatures, survival of E. coli O157:H7 was significantly higher (P<0.01) in the pasteurized whey compared to that in the unpasteurized samples. At 10 and 15 degrees C, E. coli O157:H7 in pasteurized whey significantly (P<0.05) increased during the first week of storage, followed by a decrease thereafter. However at the same temperatures, E. coli O157:H7 exhibited a steady decline in the unpasteurized samples from day 0. At 4 degrees C, E. coli O157:H7 did not grow in pasteurized and unpasteurized whey; however, the pathogen persisted longer in pasteurized samples. At all the three storage temperatures, E. coli O157:H7 survived up to day 21 in the pasteurized and unpasteurized whey. The initial load of lactic acid bacteria in the unpasteurized whey samples was approximately 7.0 log10 CFU/ml and, by day 28, greater than 3.0 log10 CFU/ml of lactic acid bacteria survived in unpasteurized whey at all temperatures, with the highest counts recovered at 4 degrees C. Results indicate the potential risk of persistence of E. coli O157:H7 in whey in the event of contamination with this pathogen.  相似文献   

16.
Inactivation of Escherichia coli O157:H7 and Salmonella in apple cider and orange juice treated with ozone was evaluated. A five-strain mixture of E. coli O157:H7 or a five-serovar mixture of Salmonella was inoculated (7 log CFU/ml) into apple cider and orange juice. Ozone (0.9 g/h) was pumped into juices maintained at 4 degrees C, ambient temperature (approximately 20 degrees C), and 50 degrees C for up to 240 min, depending on organism, juice, and treatment temperature. Samples were withdrawn, diluted in 0.1% peptone water, and surface plated onto recovery media. Recovery of E. coli O157:H7 was compared on tryptic soy agar (TSA), sorbitol MacConkey agar, hemorrhagic coli agar, and modified eosin methylene blue agar; recovery of Salmonella was compared on TSA, bismuth sulfite agar, and xylose lysine tergitol 4 (XLT4) agar. After treatment at 50 degrees C, E. coli O157:H7 populations were undetectable (limit of 1.0 log CFU/ml; a minimum 6.0-log CFU/ml reduction) after 45 min in apple cider and 75 min in orange juice. At 50 degrees C, Salmonella was reduced by 4.8 log CFU/ml (apple cider) and was undetectable in orange juice after 15 min. E. coli O157:H7 at 4 degrees C was reduced by 4.8 log CFU/ml in apple cider and by 5.4 log CFU/ml in orange juice. Salmonella was reduced by 4.5 log CFU/ml (apple cider) and 4.2 log CFU/ml (orange juice) at 4 degrees C. Treatment at ambient temperature resulted in population reductions of less than 5.0 log CFU/ml. Recovery of E. coli O157:H7 and Salmonella on selective media was substantially lower than recovery on TSA, indicating development of sublethal injury. Ozone treatment of apple cider and orange juice at 4 degrees C or in combination with mild heating (50 degrees C) may provide an alternative to thermal pasteurization for reduction of E. coli O157:H7 and Salmonella in apple cider and orange juice.  相似文献   

17.
With three pairs of primers, a multiplex PCR assay was established for the simultaneous detection of Escherichia coli 0157:H7, Salmonella, and Shigella. Under the optimized conditions, the assay yielded a 252-bp product from E. coli O157:H7, a 429-bp product from Salmonella Typhimurium, and a 620-bp product from Shigella flexneri, respectively. When the DNA extraction of multiple target organisms was included in the same reaction, two or three corresponding amplicons of different sizes were observed. In the specificity test, 10 E. coli O157:H7 strains and one E. coli O157:NM strain showed the expected 252-bp amplicon. Seven other E. coli strains yielded no signal. Additionally, the 429-bp amplicon was produced from 20 Salmonella strains covering 16 serotypes, whereas the 620-bp amplicon was generated from 11 Shigella strains covering 4 species. No nonspecific amplification was observed with DNA from 48 other bacterial strains. Following a 24-h enrichment, the developed assay could concurrently detect the three pathogens at initial inoculation levels of approximately 8 x 10(-1) CFU/g (or CFU/ml) in apple cider, cantaloupe, lettuce, tomato, and watermelon and 8 x 10(1) CFU/g in alfalfa sprouts. The whole procedure can be easily completed within 30 h. The multiplex PCR assay can potentially be a simple, rapid, and efficient tool for presumptive and simultaneous screening of apple cider and produce for contamination by E. coli O157:H7, Salmonella, and/or Shigella.  相似文献   

18.
We investigated the ability of enterohemorrhagic Escherichia coli O157:H7 to spread in wounded apple tissue by transmission electron microscopy. Red Delicious apples were wounded with an artist knife (7 mm depth) and either inoculated with 10 microl per wound of decimally diluted E. coli O157:H7 or submerged into E. coli O157:H7 suspended in sterile distilled water and then stored at 37 degrees C for 24 h. Transmission electron microscopy showed E. coli O157:H7 formed bacterial aggregates near the apple cell walls, and single cells were in close proximity to the apple cell wall surfaces and to plasma membranes. E. coli O157:H7 presence caused degradation of plasma membranes and release of the cytoplasm contents of the apple cortical cells into the central vacuole. Apple tissue turgor pressure tests showed that the apple cells infected with E. coli O157:H7 isolates were more likely to rupture than the control noninoculated apple cells. E. coli O157:H7 cells grown in apple tissue showed the formation of granules and vesicles within the bacterial cytoplasma and separation of the plasma membranes. Our study shows that E. coli O157:H7 can grow and survive in the apple tissue environment by causing degradation of the apple cellular components.  相似文献   

19.
Exposure of Escherichia coli O157:H7 to chlorine before heat treatment results in increased production of heat shock proteins. Current heating regimens for pasteurizing apple cider do not account for chlorine exposure in the wash water. This research determined the effect of sublethal chlorine treatment on thermal inactivation of E. coli O157:H7. D58-values were calculated for stationary-phase cells exposed to 0.6 mg/liter of total available chlorine and unchlorinated cells in commercial shelf-stable apple juice (pH 3.6). D58-values for unchlorinated and chlorine-exposed cells in buffer were 5.45 and 1.65 min, respectively (P < 0.01). Death curves of chlorine-exposed and unchlorinated cells in apple juice were not completely linear. Unchlorinated cells heated in apple juice exhibit a 3-min delay before onset of linear inactivation. Chlorine treatment eliminated this shoulder, indicating an overall loss of thermotolerance. The linear portion of each curve represented a small fraction of the total population. D58-values calculated from these populations are 0.77 min for unexposed cells and 1.19 min for chlorine-exposed cells (P = 0.05). This indicates that a subpopulation of chorine-treated cells is possibly more resistant to heat because of chlorine treatment. The effect of chlorine treatment, however, is insignificant when compared with the effect of losing the shoulder. This is illustrated by the time required to kill the initial 90% of the cell population. This is observed to be 3.14 min for unchlorinated versus 0.3 min for chlorine-exposed cells (P < 0.001). These observations indicate that current heat treatments need not be adjusted for the effect of chlorine treatment.  相似文献   

20.
It is common practice to dilute food products in 0.1% peptone before microbiological analysis. However, this diluent may not be appropriate for detection of injured organisms present in acidic foods. Shelf-stable unclarified apple juice (pH 3.6) was inoculated with approximately 1 x 10(7) CFU/ml of Escherichia coli O157:H7 and held at 23 +/- 2 degrees C (control) or frozen to -20 +/- 2 degrees C for 24 h to induce injury before sampling. Unfrozen or frozen and thawed juice was diluted 1:1 or 1:10 in 0.1% (wt/vol) peptone (pH 6.1) or 0.1 M phosphate buffer (pH 7.2). Juice samples were plated onto tryptic soy agar with 0.1% (wt/vol) sodium pyruvate (TSAP) to measure survival or onto sorbitol MacConkey agar (SMA) to indicate injury. Counts on TSAP or SMA were the same for control samples held in peptone or phosphate buffer for up to 45 min. However, populations of E. coli in frozen and thawed samples declined rapidly upon dilution in 0.1% peptone. Within 20 min, E. coli underwent a >1-log10 CFU/ml reduction in viability as measured on TSAP and a >2-log10 CFU/ml reduction to below the limit of detection (1.6 or 2.3 log10 CFU/ml) on SMA. In contrast, populations of E. coli in frozen and thawed samples diluted in phosphate buffer did not decrease significantly on TSAP and decreased by <0.6 log CFU/ml on SMA during a 45-min holding period. The acidity of apple juice appears to interfere with the recovery of freeze-thaw-injured E. coli O157:H7 during sampling. Using 0.1 M phosphate buffer (pH 7.2) as a diluent results in superior recovery of these organisms on both selective and nonselective plating media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号