共查询到20条相似文献,搜索用时 0 毫秒
1.
Si_3N_4/Ti/Ni/Ti/Si_3N_4部分瞬间液相连接接头的强度与断裂 总被引:2,自引:0,他引:2
在温度为1273 ~1423 K、时间为0 .9 ~7 .2 ks 和0 .1 MPa 压应力的条件下进行了Si3N4/Ti/Ni/Ti/Si3N4 的部分瞬间液相连接, 结合SEM, EDS 和XRD 测试结果, 分析了连接温度和时间对接头常温四点弯曲强度和断裂方式的影响。通过用反应层厚度来表征界面强度, 用σResθmax 来评价近界面陶瓷断裂, 用σResθ= 0 来评价界面断裂, 建立了界面强度、陶瓷强度和残余应力与接头强度和三种断裂类型的关系模型。 相似文献
2.
Ti/Cu/Ti部分瞬间液相连接Si3N4的界面反应和连接强度 总被引:13,自引:1,他引:13
用Ti/Cu/Ti多层中间导在1273K进行氮化硅陶瓷部分瞬间液相连接,实验考察了保温时间对连接强度的影响,用SEM,EPMA和XRD对连接界面进行微观分析,并用扩散路径理论,研究了界面反应产物的形成过程,结果表明:在连接过程中,Cu与Ti相互扩散,形成Ti活度较高的液相,并与氮化硅发生反应,在界面形成Si3N4/TiN/Ti5Si3 Ti5Si4 TiSi2/TiSi2 Cu3Ti2(Si)/Cu的梯度层,保温时间主要是通过影响接头反应层厚度和残余热应力大小而影响接头的连接强度。 相似文献
3.
4.
5.
复合阻隔扩散连接技术是制备高性能钨/钢异种金属结构件的有效方法.本文研究Ti/Ni复合中间层扩散连接钨与钢接头的断裂行为,分析金属间化合物和残余应力对钨/钢接头性能及断裂方式的影响.结果表明:在拉伸载荷作用下,钨/Ti/Ni/钢扩散连接接头呈现出界面断裂、反应层断裂和混合断裂等3种断裂模式;在较低的连接温度和较短的保温... 相似文献
6.
Si3N4/Cu68Ti20Ni12的界面结构及连接强度 总被引:1,自引:0,他引:1
采用Cu68Ti20Ni12钎料进行了Si3N4/Si3N4的活性钎焊连接。结果表明:钎焊温度和时间对连接强度有重要影响;在1373K,10min的连接条件下,Si3N4/Si3N4连接强度达到最大值289MPa。通过对Si3N4/Cu68Ti20Ni12界面区的微观分析:发现Ti,Ni明显向Si3N4方向富集,相对Ni而言,Ti的富集区更靠近Si3N4陶瓷,而Si则向钎料方向扩散,Cu在接头中心富集:界面区存在2层反应层,反应层Ⅰ为TiN层,而反应层Ⅱ则由TiN,Ti5Si4,Ti5Si3,Ni3Si及NiTi化合物组成。 相似文献
7.
利用Nb/Cu/Ni复合层作中间层,采用液相诱导扩散连接方法连接了Si3N4陶瓷/Inconel 600合金,用剪切试验评价接头强度,采用扫描电镜(SEM)观察接头的断口形貌,系统地分析了连接压力、连接时间,连接温度对Si3N4陶瓷/Inconel 600合金液相诱导扩散连接接头的强度和断裂行为的影响。结果表明,连接温度(在连接时间为3000s以及连接压力为5MPa条件下)、连接压力(在连接温度为1130℃以及连接时间为3000s条件下)和连接时间(在连接温度为1130℃以及连接压力为10MPa条件下)都与接头的剪切强度呈抛物线关系。 相似文献
8.
活性金属部分瞬间液相连接氮化硅陶瓷的研究 总被引:6,自引:0,他引:6
采用Ti/Cu/Ti多层中间层在1273 K温度下进行氮化硅陶瓷部分瞬间液相连接,考察了保温时间对连接强度的影响,并对连接界面进行了SEM,EPMA和XRD分析.结果表明,通过Cu-Ti二元扩散促使液相与氮化硅发生界面反应,形成Si3N4/TiN/Ti5Si3+Ti5Si4+TiSi2/TiSi2+Cu3Ti2(Si)/Cu的梯度层.保温时间影响接头反应层厚度,从而影响接头的连接强度根据活性金属部分瞬间液相连接陶瓷的界面行为,建立了活性金属部分瞬间液相连接陶瓷的理论模型.该模型较好地解释了Ti/Cu/Ti和Ti/Ni/Ti连接氮化硅陶瓷的异同点和连接工艺参数的选择. 相似文献
9.
Ti/Cu/Ti部分瞬间液相连接Si_3N_4的界面反应和连接强度 总被引:2,自引:0,他引:2
用Ti/Cu/Ti多层中间层在 12 73K进行氮化硅陶瓷部分瞬间液相连接 ,实验考察了保温时间对连接强度的影响。用SEM ,EPMA和XRD对连接界面进行微观分析 ,并用扩散路径理论 ,研究了界面反应产物的形成过程。结果表明 :在连接过程中 ,Cu与Ti相互扩散 ,形成Ti活度较高的液相 ,并与氮化硅发生反应 ,在界面形成Si3N4 /TiN/Ti5Si3 Ti5Si4 TiSi2 /TiSi2 Cu3Ti2 (Si) /Cu的梯度层。保温时间主要是通过影响接头反应层厚度和残余热应力大小而影响接头的连接强度 相似文献
10.
采用非活性金属中间层FeNi/Cu在高、低真空条件下进行了Si3N4陶瓷与Ni的扩散连接,然后对部分接头进行了热等静压(HIP)后处理,测定了连接接头的四点弯曲强度,用扫描电镜(SEM)、电子探针(EPMA0和X射线衍射仪(XRD)对连接界界面区域进行了分析。结果表明,采用非活性金属中间扩散连接Si3N4陶瓷与Ni,在高真空和低真空条件下均能获得高强度连接,连接界面处没有形成Ni-Si化合物反应层,连接时间对接头强度的影响不明显。上述特征与用活性多种中间层连接时的情况截然不同。本文的连接方法有着重要的工程应用前景。 相似文献
11.
采用有限元数值模拟方法研究了用AgCuTi钎料并添加Kovar中间层对氧化铝陶瓷/不锈钢进行钎焊连接接头残余应力的分布情况,分析接头形式对残余应力的影响.结果表明,采用等壁厚直接对接接头时,接头最大等效应力高达600 MPa以上,而将不锈钢壁厚减半后再进行对接时,接头最大等效应力可以降低近200 MPa;两种情况下最大等效应力均出现在靠近连接界面的陶瓷中,断裂易在此位置发生.考查了各应力分量对最终残余应力的贡献,结果显示轴向应力和剪切应力在靠近界面的陶瓷侧有较大残余拉应力是造成接头强度降低的主要因素. 相似文献
12.
Ti-Zr-Ni-Cu非晶钎料钎焊Si3N4陶瓷的连接强度 总被引:4,自引:1,他引:4
采用Ti40Zr25Ni15Cu20非晶钎料钎焊Si3N4陶瓷,研究钎焊工艺参数对界面反应层和接头连接强度的影响。结果表明:随着钎焊时间的增加和钎焊温度的提高,接头弯曲强度都表现出先上升后下降的趋势;钎焊工艺参数对连接强度的影响主要是由于影响反应层厚度所致;在相同钎焊工艺条件下,采用Ti40Zr25Ni15Cu20非晶态钎料和晶态钎料相比,其接头连接强度提高了84%。 相似文献
13.
采用TiZrNiCu合金作为中间层材料研究了Ti3Al基合金的瞬间液相扩散连接,采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)及电子万能试验机研究了接头的组织结构与力学性能.结果表明,采用TiZrNiCu作为中间层可以实现Ti3Al基合金的TLP扩散连接,能形成完整的接头.较高的连接温度和较长的连接时间有利于获得成分和组织较为均匀的接头.随着连接温度的提高和连接时间的延长,接头连接区宽度增大,反应层数量减少.当连接温度为900℃,连接时间为60min时,接头组织主要为钛固溶体,TiAl和TiCu.接头抗剪强度最高,可达420.1MPa. 相似文献
14.
采用Ti/Cu/Ni中间层对Si3N4陶瓷进行二次部分瞬间液相(PTLP)连接,研究连接工艺参数对Si3N4/Ti/Cu/Ni连接强度的影响,同时研究了连接强度随试验温度的变化规律。结果表明,在该试验条件下,室温连接强度随着二次连接温度的提高和二次保温时间的延长而提高,改变连接工艺参数对Si3N4/Ti/Cu/Ni二次PTLP连接界面反应层厚度无明显影响;连接强度在试验温度400℃时达到最大,随后随试验温度升高,连接强度降低,但在800℃前,其高温强度具有很好的稳定性。 相似文献
15.
采用Ti(5μm)/Cu(70μm)/Ti中间层,通过改变连接时间和连接温度进行Si3N4。陶瓷的部分瞬间液相连接(PTLP连接),用扫描电镜、电子探针对连接界面区域进行了分析,系统地研究了Si3N4/Ti/Cu/Ti/Si3N4 PTLP连接过程的动力学。结果表明,界面反应层的生长和等温凝固界面的迁移均符合扩散控制的抛物线方程。PTLP连接参数的优化不同于通常的活性钎焊和固相扩散连接的参数优化,反应层生长和液相区等温凝固这两个过程必须协调,才能同时提高室温和高温连接强度。 相似文献
16.
17.
反应层厚度对AI203/AgCuTi/Ti—6AI—4V接头强度的影响 总被引:3,自引:0,他引:3
通过保持一定钎焊温度,改变钎焊时间得到不同反应层厚度的AI2O3/AgCuTi界面。结合扫描电镜(SEM)和力学试验结果,分析了反应层厚度对AI2O3/AgCuTi/Ti-6AI-4V接头强度的影响。结果表明:厚度为1.5μm时,接头强度达到最大值125MPa;厚度小于1μm,剪切试样沿反应层和AI2O3陶瓷界面断裂;大于3μm,沿反应层断裂,反应层厚度较薄时,接头强度取决盱界面强度和残余应力的大小;反应层厚度较厚时,接头强度取决于反应层自身强度和残余应力的大小。 相似文献
18.
Partial transient liquid-phase bonding (PTLP bonding) of Si3N4 ceramic with Ti/Cu/Ti multi-interlayer is performed with changing the thickness of Ti foil. The influence of Ti foil thickness on interface structure and joint strength was discussed. The joint interface structures are investigated by scanning electron microscope (SEM) and energy dispersion spectroscopy(EDS). The results show that the maximum joint strength of 210 MPa is obtained at room temperature in the experiments. When joining temperature and time are not changed and the process of isothermal solidification is sufficient , interface structure, reaction layer thickness and isothermal solidification thickness change with the thickness of Ti foil. 相似文献
19.
采用Ti/Cu/Ti中间层在l273K、180min的条件下,改变Ti箔厚度进行Si3N4陶瓷的部分瞬间液相(PTLP)连接,讨论Ti箔厚度对界面结构及连接接头强度的影响,用扫描电镜、电子探针对连接界面区域进行了分析。结果表明,在试验范围内,Ti箔厚度为10μm时Si3N4/Ti/Cu/Ti/Si3N4接头的室温强度最高,为210MPa。PTLP连接时,当连接温度和时间不变,且连接时间能保证等温凝固过程充分进行的条件下,Si3N4/Ti/Cu/Ti/Si3N4连接界面结构、反应层厚度、等温凝固层厚度随着Ti箔厚度改变而改变。 相似文献