共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thermal degradation processes for a series of mixtures of oil shale/plastic were investigated using thermogravimetric analysis (TGA) at four heating rates of 2, 10, 20 and 50 K min− 1 from ambient temperature to 1273 K. High density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) were selected as plastic samples. Based on the results obtained, three thermal stages were identified during the thermal degradation. The first is attributed to the drying of absorbed water; the second was dominated by the overlapping of organic matter and plastic pyrolysis, while the third was linked to the mineral matter pyrolysis, which occurred at much higher temperatures. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperatures of each component in the mixture were higher than those of the individual components; thus an increase in thermal stability was expected. In addition, a kinetic analysis was performed to fit thermogravimetric data. A reasonable fit to the experimental data was obtained for all materials and their mixtures. 相似文献
3.
Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data 总被引:1,自引:0,他引:1
Shabbar Syed 《Fuel》2011,90(4):1631-1637
Thermogravimetric (TG) data of oil shale obtained at MI (Waste to Energy laboratory) were studied to evaluate the kinetic parameters for El-Lujjun oil shale samples. Different heating rates were employed simulating pyrolysis reaction using Nitrogen as purging gas up to ∼800 °C. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release; devolatization; and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Three methods were used and compared: integral method; direct Arrhenius plot method; and temperature integral approximation method. Results showed that integral method is closer to the experiment, while no relationship was observed between activation energy and the heating rate. 相似文献
4.
Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales 总被引:1,自引:0,他引:1
Mohammad Al-Harahsheh Omar Al-Ayed John RobinsonSam Kingman Adnan Al-Harahsheh Khalid TarawnehAbdurrahman Saeid Richelieu Barranco 《Fuel Processing Technology》2011,92(9):1805-1811
The effect of mineral matter content on the activation energy of oil shale pyrolysis has been studied. Kerogen was isolated from raw oil shale by sequential HCl and HCl/HF digestion. Oil shale and kerogen samples were pyrolyzed in a Thermogravimetric Analyzer at different heating rates (1, 3, 5, 10, 30, and 50 °C/min) up to a temperature of 1000 °C. Total mass loss of all oil shale samples remained almost constant irrespective of the heating rate employed, whereas it decreased with the increase of heating rate for kerogen (74.5 to 71.4%). From the pyrolysis profile activation energy (Ea) was found to vary between 70 and 83 kJ/mol for oil shale, while 82-112 kJ/mol has been determined for isolated kerogen. An increase of both Ea and pre-exponential factor was observed with an increasing heating rate. It is concluded that the mineral matter in oil shale enhances catalytic cracking as is evident from the reduced Ea values of oil shale compared with those for kerogen. 相似文献
5.
大庆油页岩及干馏产物的利用途径分析 总被引:1,自引:0,他引:1
大庆油页岩的舍油率大部分都在10%以上,具有很好的经济开发价值.对大庆油页岩及其干馏产物性质的实验研究表明,油页岩的机械强度较低,应选择粉末、颗粒干馏炉进行加工处理;页岩油主要由柴油馏分和重油馏分组成,分别可加工成成品油和直接用作燃料油;热解干馏气热值约为17MJ/m3,可以在除作自身干馏所需的热量燃料外,用作城市煤气或工业锅炉的燃料;半焦着火点低,热值约为23 MJ/kg,可作为清洁燃料用于发电或民用;页岩灰的主要组分是氧化钙争氧化硅,可用于生产建筑材料. 相似文献
6.
The effect of temperature and heating rate on the cross-link density of char samples obtained by pyrolysing Goynuk oil shale was investigated using the volumetric solvent swelling technique. The cross-link density decreases slightly with increasing pyrolysis temperature. The heating rate and thus the pyrolysis time had at most a small effect on the cross-link density. Char-solvent interactions do not follow regular solution theory. The demineralized kerogen swells more than does the native kerogen (16% ash). 相似文献
7.
Pyrolysis experiments on Maoming oil shale lumps (10–60 mm in diameter) were carried out with the aid of large-particle thermogravimetric analysis apparatus at constant heating rates of 1, 2 and 5 °C min−1. A pyrolysis kinetic model was developed which took into account both the pyrolysis reaction and intraparticle heat transfer. Oil shale pyrolysis kinetic parameters were then determined on the basis of experimental data concerning weight loss, shale oil production, gas evolution and intraparticle temperature distribution versus time, by using the developed model. Furthermore, the effects of variables (e.g. temperature, lump size, heating rate) on oil shale pyrolysis were assessed during experimentation. It is found that model predictions agree reasonably well with experimental data. 相似文献
8.
A brown coal, peat and oil shale were subjected to a rapid pyrolysis process and medium-heat-value gases together with tar were collected. The char residue was of high activity and suitable for gasification to create a two-stage gasification system. The coal-tar is used for manufacturing liquid fuels and chemicals. 相似文献
9.
Adnan Al-Harahsheh Mohammad Al-Harahsheh Awni Al-Otoom Mamdoh Allawzi 《Fuel Processing Technology》2009
The effect of demineralization on oil yield and mineral composition of Jordanian oil shale was investigated. A standard digestion procedure using a range of inorganic and organic acids including HCl, HNO3, HF, and CH3COOH was used to enhance the oil recovery of oil shale samples collected from the El-lajjun area. The total yield of the digested samples, as determined by Fischer Assay, has shown a maximum value (two folds the untreated sample) obtained when using CH3COOH. The kaolin in the treated oil shale with a high concentration of CH3COOH is believed to have transformed to illite as found in the XRD analysis. The treatment of oil shale using HCl has shown an increased ratio of oil to gas as a result of the digestion of calcite in the oil shale. At higher concentrations of HNO3, the acid is believed to react with the kerogen in the oil shale resulting in high levels of low molecular weight compounds. Therefore, the amount of non-condensable gases produced by Fischer assay after treatment with a high concentration of HNO3 is relatively high. HF is believed to drive off water from the oil shale by dissolving the clay minerals leading to increased oil to gas ratio. 相似文献
10.
In thermal processing of oil shale in vertical retorts huge quantities of a solid waste — semicoke are formed. It has been shown that circulating fluidized bed combustion of semicoke could be a promising technology allowing utilization of its high residual energy potential. The main parameters of combustion process and the additional heat produced were calculated and verified by combustion tests in a fluidized bed device with a thermal capacity of 50 kWth. The experiments indicated that semicoke with low moisture content can be burnt directly in fluidized bed. For the combustion of semicoke with higher moisture content (over 10%) about 10% of oil shale must be added. In addition, possibilities for utilizing residual carbon present in semicoke by obtaining carbon-rich materials with further production, for example, activated carbon were discussed. A series of experiments accompanied by SEM and EDAX analysis was carried out in order to elucidate the distribution of carbon and mineral part in semicoke and to find possibilities for their separation and subsequent enrichment. Different separation methods — selective grinding and subsequent screening, pneumatic separation and triboelectroseparation method were analyzed. It was shown that due to close integration of mineral and organic part in semicoke, the separation of carbon-rich ingredients by these methods was not enough effective to obtain enriched products suitable for the production of activated carbon. 相似文献
11.
There are significant resources of oil shale in the western United States, which if exploited in an environmentally responsible manner would provide secure access to transportation fuels. Understanding the kinetics of kerogen decomposition to oil is critical to designing a viable process. A dataset of thermogravimetric analysis (TGA) of the Green River oil shale is provided and two distinct data analysis approaches—advanced isoconversional method and parameter fitting are used to analyze the data. Activation energy distributions with conversion calculated using the isoconversional method (along with uncertainties) ranged between 93 and 245 kJ/mol. Root mean square errors between the model and experimental data were the lowest for the isoconversional method, but the distributed reactivity models also produced reasonable results. When using parameter fitting approaches, a number of models produce similar results making model choice difficult. Advanced isoconversional method is better in this regard, but maybe applicable to a limited number of reaction pathways. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
12.
Rundle shale (Queensland, Australia) was pyrolysed at 12.5 K min−1 to 350–500 °C for 10–240 min. The structures of the liquid products and pyrolysis residues were investigated by a number of n.m.r. spectroscopic techniques including cross-polarization and dipolar dephasing. N.m.r. provided a simple method for detecting nitrile carbon and measuring terminal and internal olefinic hydrogen in shale oil. It was found that the ratio of terminal olefinic hydrogen to internal olefinic hydrogen in shale oil increases by a factor of three over the range 350–500 °C. Moreover, the results suggest that aromatic rings in Rundle shale residues are not highly substituted and hence that aromatic ring condensation reactions are not important during pyrolysis. From elemental, yield and n.m.r. data, the conversion of aliphatic carbon to aromatic carbon during pyrolysis was found to be as high as 25% at 500 °C. 相似文献
13.
Sunhua DengZhijun Wang Qiang Gu Fanyu MengJunfeng Li Hongyan Wang 《Fuel Processing Technology》2011,92(5):1062-1067
The possibility of extracting hydrocarbons from Huadian oil shale by sub-critical water was found in a stainless steel vessel. The effects of temperature and pressure on the extraction of hydrocarbons were studied. After extraction experiments, the residual solid, liquid and gas phase samples were collected and characterized, respectively. The extract yield could reach 7 wt.% (ad) when the extraction of oil shale was conducted at 260 °C for 2.5 h with the pressure of 15 MPa. The results of thermogravimetry (TG) showed that the weight loss of residual solid samples was much smaller than that of the original oil shale. It indicated that kerogen components had been decomposed partly by treatment with sub-critical water. Gas chromatography-mass spectrometry (GC-MS) analysis showed that there were more than 300 recognizable peaks in the extracting solution following processing at 330 °C and 18 MPa. Large amounts of high molecular weight hydrocarbons were gradually decompounded by the increase in types and levels of low molecular weight hydrocarbons, and polycyclic and heterocyclic compounds with the rising of pressure and temperature. These indicated that sub-critical water is capable of cracking kerogen into smaller hydrocarbon compounds at relatively low temperatures. 相似文献
14.
15.
The solid by-product of oil shale processing (PETROBRAS-Brazil) was used as a raw material to synthesize Na-A and -X zeolites. Two preparation methods using the same starting material composition were carried out. In Method (1), alkaline fusion was used to prepare a glass, which was then hydrated by refluxing. The largest amount of crystallinity was reached with 2 h 30 min of refluxing. In Method (2), alkaline fusion was followed by hydrothermal treatment. The most crystalline sample was obtained after 12 h of heat treatment, and after 96 h hydroxysodalite zeolite was formed. In both procedures, the synthesis products were mainly composed of Na-X zeolite, whose content was influenced by the crystallization time, and of Na-A zeolite, with a practically constant content. 相似文献
16.
Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips 总被引:1,自引:0,他引:1
The change of mass and composition of biomass tar due to homogeneous secondary reactions was experimentally studied by means of a lab reactor system that allows the spatially separated production and conversion of biomass tar. A tarry pyrolysis gas was continuously produced by pyrolysis of wood chips (fir and spruce, 10-40 mm diameter) under fixed-bed biomass gasification conditions. Homogeneous secondary tar reactions without the external supply of oxidising agents were studied in a tubular flow reactor operated at temperatures from 500 to 1000 °C and with space times below 0.2 s. Extensive chemical analysis of wet chemical tar samples provided quantitative data about the mass and composition of biomass tar during homogeneous conversion. These data were used to study the kinetics of the conversion of gravimetric tar and the formation of PAH compounds, like naphthalene.It is shown that, under the reaction conditions chosen for the experiments, homogeneous secondary tar reactions become important at temperatures higher than 650 °C, which is indicated by the increasing concentrations of the gases CO, CH4, and H2 in the pyrolysis gas. The gravimetric tar yield decreases with increasing reactor temperatures during homogeneous tar conversion. The highest conversion reached in the experiments was 88% at a reference temperature of 990 °C and isothermal space time of 0.12 s. Hydrogen is a good indicator for reactions that convert the primary tar into aromatics, especially PAH. Soot appears to be a major product from homogeneous secondary tar reactions. 相似文献
17.
18.
以油页岩颗粒作为干燥物料,以过热蒸汽和热空气分别作为干燥介质,进行了油页岩干燥实验的研究。当颗粒粒径减小时,油页岩干燥速率越大;过热蒸汽和热空气温度增大时,干燥速率也越大。对比相同条件下过热蒸汽和热空气干燥油页岩的平均干燥速率,发现当干燥介质温度超过逆转点温度时,过热蒸汽条件下的平均干燥速率大于热空气下的数值。实验得出粒径分别为9,7,5 mm的油页岩颗粒逆转点温度值分别是154,179,177℃;逆转点温度值是个变量,随颗粒粒径大小变化而变化。颗粒粒径越大时逆转点温度值越小,粒径较小时逆转点变化不大。采用薄层干燥模型对油页岩的干燥数据进行动力学模拟,可得修正Page模型(Ⅱ)干基水分比w模拟值与实验值的最大绝对偏差是12%,综合比较发现修正Page模型(Ⅱ)能较好地描述油页岩在过热蒸汽条件下的干燥过程。 相似文献
19.
Paul F.V. Williams 《Fuel》1985,64(4):540-545
The characteristics of volatile matter evolution and the kinetics of thermal decomposition of British Kimmeridge Clay oil shale have been examined by thermogravimetry. TG has provided an alternative to the Fischer assay for shale grade estimation. The following relation has been derived relating TG % volatiles yield to the shale gravimetric oil yield: oil yield (g kg?1) = (TG volatiles, % × 5.82) ? 28.1 ± 14.5 g kg?1. A relationship has also been established for volumetric oil yield estimation: oil yield (cm3 kg?1) = (TG volatiles, % × 4.97) – 5.43. TG is considered to give a satisfactory estimation of shale oil yield except in certain circumstances. It is found to be less reliable for low yield shales producing <≈40 cm3 kg?1 of oil (≈10 gal ton?1) where oil content of the TG volatiles is low: volumetric yield estimation accuracy is affected by variations in shale oil specific gravity. First order rate constants, k = 4.82 × 10?5s?1 (346.3 cm3 kg?1shale) and k = 6.78 × 10?5s?1 (44.6cm3 kg?1shale) have been obtained for the devolatilization of two Kimmeridge oil shales at 280 °C using isothermal TG. Using published pre-exponential frequency factors, an activation energy of ≈57.9 kJ mol?1 is calculated for the decomposition. Preliminary kinetic studies using temperature programmed TG suggest at least a two stage process in the thermal decomposition, with two maxima in the volatiles evolution rate at ≈450 and 325 °C being obtained for some samples. Use of published pre-exponential frequency factors gives activation energies of ≈212 and 43 kJ mol?1 for these two stages in the decomposition. 相似文献
20.
The impact of shrinkage on pyrolysis of biomass particles is studied employing a kinetic model coupled with heat transfer model using a practically significant kinetic scheme consisting of physically measurable parameters. The numerical model is used to examine the impact of shrinkage on particle size, pyrolysis time, product yields, specific heat capacity and Biot number considering cylindrical geometry. Finite difference pure implicit scheme utilizing tri-diagonal matrix algorithm (TDMA) is employed for solving heat transfer model equation. Runge-Kutta fourth-order method is used for chemical kinetics model equations. Simulations are carried out for radius ranging from 0.0000125 to , temperature ranging from 303 to and shrinkage factors ranging from 0.0 to 1.0. The results obtained using the model used in the present study are in excellent agreement with many experimental studies, much better than the agreement with the earlier models reported in the literature. Shrinkage affects both the pyrolysis time and the product yield in thermally thick regime. However, it is found that shrinkage has negligible affect on pyrolysis in the thermally thin regime. The impact of shrinkage reflects on pyrolysis in several ways. It includes reduction of the residence time of gases within the particle, cooling of the char layer due to higher mass flux rates of pyrolysis products and thinning the pyrolysis reaction region. 相似文献