首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated kainate-induced excitotoxicity in embryonic rat hippocampal cells cultured in a chemically defined medium. Treatment with kainate for 24 h resulted in neuronal death, as assessed by the release of lactate dehydrogenase into the culture media. This neurotoxic effect was kainate dose- and culture age-dependent. EC50 of kainate was 127 +/- 11 microM. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (f)quinoxaline (NBQX) completely blocked the toxicity, while MK801, an N-methyl-D-aspartate (NMDA) receptor antagonist, also blocked it but not completely. Furthermore, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) attenuated the kainate injury, while the selective and noncompetitive AMPA-preferring receptor antagonist 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzo-diazepine (GYKI 52466) blocked it completely. Concanavalin A (ConA), which potentiates the response to kainate at kainate-preferring receptors, had little effect on kainate toxicity. Further, AMPA alone induced little toxicity, but produced remarkable toxicity when cyclothazide was used to block the desensitization of AMPA-preferring receptors. These results indicate that kainate excitotoxicity in hippocampal cultures is mediated by AMPA- but not kainate-preferring receptors, and that it involves NMDA-receptor-mediated toxicity. The non-desensitizing response at AMPA-preferring receptors may play an important role in kainate-induced excitotoxicity.  相似文献   

2.
In unanesthetized decerebrate rats, GYKI 52466 (1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride), an AMPA/kainate receptor antagonist, and MK-801 (dizocilpine), an NMDA receptor antagonist, acted synergistically to depress the micturition reflex. MK-801 (1 mg/kg i.v.) and GYKI 52466 (4 mg/kg i.v.) administered separately had no or only a small depressant effect on reflex bladder contractions but markedly depressed external urethral sphincter activity. However, in MK-801-treated rats, GYKI 52466 decreased the amplitude, frequency and duration of reflex bladder contractions. These results suggest that both AMPA/kainate and NMDA glutamate receptors are important in the micturition reflex pathway and that these receptors may be activated in parallel at some site in the pathway so that excitatory transmission via only one receptor type is sufficient to mediate reflex activation of the bladder.  相似文献   

3.
1. Desensitization is an important characteristic of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type. 2. Stimulation of N-methyl-D-aspartate (NMDA) or AMPA receptors in cerebellum results in increased production of cyclic GMP. We have investigated AMPA receptor desensitization in vivo by monitoring extracellular cyclic GMP during intracerebellar microdialysis in conscious unrestrained adult rats. 3. Local infusion of AMPA (10 to 100 microM) caused dose-related elevations of cyclic GMP levels. The effect of AMPA was prevented by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG). 4. In the absence of AMPA, DNQX lowered the basal levels of cyclic GMP whereas the NMDA receptor channel antagonist dizocilpine (MK-801) was ineffective. 5. Cyclothiazide, a blocker of AMPA receptor desensitization, potentiated the cyclic GMP response to exogenous AMPA. Moreover, cyclothiazide (100-300 microM) produced on its own dose-dependent elevations of extracellular cyclic GMP. The cyclothiazide-induced response was prevented not only by DNQX but also by MK-801. 6. While the cyclic GMP response elicited by AMPA was totally insensitive to MK-801, the response produced by AMPA (10 microM) plus cyclothiazide (30 microM) was strongly attenuated by the NMDA receptor antagonist (30 microM). 7. The results suggest that (a) AMPA receptors linked to the NO-cyclic GMP pathway in the cerebellum can undergo desensitization in vivo during exposure to exogenous AMPA; cyclothiazide inhibits such desensitization; (b) AMPA receptors (but not NMDA receptors) are 'tonically' activated and kept in a partly desensitized state by endogenous glutamate; (c) if cyclothiazide is present, activation of AMPA receptors may permit endogenous activation of NMDA receptors.  相似文献   

4.
High doses of morphine produce a state of behavioural inactivity and muscular rigidity. This type of 'catalepsy' is clearly different from the state which is produced by the administration of neuroleptics, e.g. haloperidol. While haloperidol-induced catalepsy can easily be antagonised by NMDA receptor antagonists, there has been a report that the non-competitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801) potentiates morphine-induced catalepsy. The aim of this study was to further examine the role of glutamate receptors in the mediation of morphine-induced catalepsy. To this end we coadministered morphine (20, 40, 60 mg/kg i.p.) with MK-801 (0.1 and 0.3 mg/kg i.p.), the competitive NMDA receptor antagonist DL-(E)-2-amino-4-methyl-5-phosphono-3-pentoic acid (CGP 37849) (2 and 6 mg/kg i.p.), or 1-(4-aminophenyl)-4-methyl-7,8-methylen-dioxy-5H-2,3- benzodiazepine (GYKI 52466) (2 and 4 mg/kg), an antagonist of the AMPA type of glutamate receptors, respectively. The degree of catalepsy was assessed using two different methods, the 'bar/podium/grid' test which is commonly used to measure neuroleptic-induced catalepsy, and a test for the presence or absence of righting reflexes after turning the animals into a supine position. It was found that in the 'bar/podium/grid' test coadministration of both NMDA receptor antagonists significantly and dose-dependently augmented morphine-induced catalepsy. The results using the AMPA receptor antagonist were less clear since the lower dose of GYKI 52466 tended to attenuate the morphine effect whereas the higher dose augmented morphine-induced catalepsy in some cases. While placing the animals on the bar and on the podium produced essentially the same results, the grid was found to be inapplicable for the measurement of morphine-induced catalepsy since the animals did not cling to the grid and fell off almost immediately after being released from the experimenter's hand. With respect to the righting reflexes it was found that the number of animals not showing these responses increased when MK-801 or CGP 37849 was coadministered with morphine. In contrast, most of the animals treated with GYKI 52466 and morphine displayed intact righting reflexes. It is concluded that glutamatergic transmission plays an important role in the mediation of morphine-induced catalepsy, though different to that of haloperidol-induced catalepsy, and that NMDA and AMPA receptors are differentially involved in different aspects of the associated behavioural state.  相似文献   

5.
Allosteric regulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors include 2,3-benzodiazepines such as GYKI 52466 and GYKI 53655 and the chaotropic anion thiocyanate that inhibit, and benzothiadiazines such as cyclothiazide that potentiate AMPA receptor currents. Here we sought to determine whether the allosteric regulators modulate AMPA receptors at a common or distinct allosteric sites by comparing their actions on AMPA- and kainate-evoked currents in cultured rat hippocampal neurons and Xenopus oocytes expressing recombinant AMPA receptor subunits. GYKI 52466 and thiocyanate blocked AMPA-evoked currents in a concentration-dependent manner (IC50 values, 8.2 microM and 1.1 mM, respectively); in contrast, kainate-evoked currents were blocked by GYKI 52466, but were potentiated by high concentrations of thiocyanate (> or = 3 mM). Thiocyanate enhanced the rate of desensitization and slowed recovery from desensitization of AMPA-evoked currents, whereas GYKI 52466 failed to affect desensitization. Among neurons in the hippocampal cultures, there was cell-to-cell variability in the sensitivity to block of AMPA-evoked currents by thiocyanate that was correlated with the degree of potentiation by cyclothiazide. Moreover, cyclothiazide caused a parallel rightward shift in the concentration-response curve for thiocyanate block, and slowed the onset of thiocyanate block to a rate that was similar to that of cyclothiazide dissociation. Together, these observations suggest that thiocyanate and cyclothiazide act at non-distinct allosteric sites. GYKI 52466 blocked AMPA receptor responses to a similar extent, irrespective of the degree of cyclothiazide potentiation. Moreover, the kinetics of GYKI 53655 block in the presence of cyclothiazide were not consistent with a competitive interaction. As is the case for cyclothiazide, SCN- exhibited greater affinity for flip than for flop AMPA receptor splice variants. In particular, GluR1flip/GluR2flip was especially sensitive to thiocyanate block. We conclude that thiocyanate, a flip-preferring allosteric modulator like cyclothiazide, appears to act by enhancing desensitization at a site that may overlap the site where cyclothiazide reduces desensitization, whereas 2,3-benzodiazepines act at a distinct site and the block does not involve a modification of desensitization.  相似文献   

6.
Glutamate (Glu), the major excitatory neurotransmitter in the nervous system, is toxic to neurons when it accumulates at high concentrations in the extracellular space. Even though Glu is a mixed agonist, capable of activating N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors, in many preparations Glu neurotoxicity is prevented by selective blockade of NMDA receptors. In cultures of hippocampal neurons, treatment with 500 microM Glu for 30 min killed more than 90% of the neurons. The simultaneous addition of the selective NMDA agonist methyl-10,11-dihydro-5-H-dibenzocyclo-hepten-5,10-imine (MK-801) reduced the cell loss to less than 30%. However, when Glu was combined with either diazoxide or cyclothiazide, two thiazides which dramatically diminish rapid Glu desensitization, MK-801 was no longer very protective and neuronal loss exceeded 80%. However, the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), in combination with MK-801, was able to prevent most Glu neurotoxicity in the presence of these thiazides. These experiments show that there are circumstances under which Glu neurotoxicity is produced by overactivation of non-NMDA receptors. Our observations offer a possible explanation for the recent finding that blockade of non-NMDA receptors is much more beneficial than NMDA receptor blockade in protecting the brain in some in vivo models of global ischemia.  相似文献   

7.
Whole-cell patch-clamp recordings from single cultured cortical neurones have been used to study the action of (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propionic acid (ATPO), which has previously been proposed to be a potent selective antagonist of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors. ATPO competitively reduced peak responses evoked by semi-rapid applications of AMPA (Ki = 16 microM) but had variable effects on plateau responses, which were on average unchanged. Following blockade of AMPA receptor desensitization by cyclothiazide (CTZ, 100 microM), the plateau responses were reduced by ATPO to a similar extent as the peak responses, indicating that ATPO reduces desensitization of AMPA receptors. Semi-rapid application of kainic acid (KA) and the KA receptor-selective agonist, (2S,4R)-4-methylglutamic acid (MeGlu) evoked non-desensitizing responses which were competitively antagonized by ATPO (Ki values: 27 and 23 microM, respectively). Responses to MeGlu were unaffected by CTZ (100 microM), but potentiated 3 fold following blockade of KA receptor desensitization by concanavalin A (Con A, 300 microg ml(-1)). Responses of spinal cord neurones to MeGlu were blocked by ATPO to a similar extent before and after blockade of KA receptor desensitization by Con A. Although selectively potentiated by Con A, plateau responses to MeGlu were reduced by 69.6% by the AMPA selective antagonist, GYKI 53655 (10 microM). The remaining component was further reduced by ATPO with a Ki of 36 microM, which was not significantly different from that in the absence of GYKI 53655, but was greater than that on responses to AMPA. It is concluded that ATPO is a moderate-potency competitive inhibitor of naturally expressed non-NMDA receptors.  相似文献   

8.
The effects of four glutamate receptor antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-responses were evaluated using both in vitro and in vivo electrophysiological techniques: whole cell patch-clamp recordings from cultured mouse cortical neurones and microiontophoresis in the rat hippocampus. The compounds tested were NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), GYKI 52466 (1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine), PNQX (pyrido[3, 4-f]quinoxaline-2,3-dione, 1,4,7,8,9,10-hexahydro-9-methyl-6-nitro-, methanesulfonate), NS377 (7-ethyl-5-phenyl-1,6,7,8-tetrahydro-1,7-diaza-as-indacene-2 ,3-dione), and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenz(a,d)cycloheptene-5,10-imine hydrogen maleate). In vitro, the IC50 values (in microM) for inhibition of AMPA-evoked inward currents were approximately 0.4 for NBQX, approximately 7.5 for GYKI 52466, approximately 1 for PNQX and approximately 15 for NS377. PNQX and NS377 also inhibited NMDA-induced currents with IC50 values at approximately 5 and approximately 18 microM, respectively, while NBQX at 60 microM and GYKI 52466 at 100 microM had only weak effects. The ED50 values in micromol/kg i.v. for inhibition of AMPA-evoked hippocampal neuronal spike activity in vivo were approximately 32 for NBQX, approximately 19 for GYKI 52466, approximately 17 for PNQX and approximately 11 for NS377 with efficacy values (maximal inhibition) between 71% and 81%. The ED50 values (in [Lmol/kg i.v.) and efficacy values for inhibition of NMDA-evoked hippocampal neuronal spike activity were approximately 28 with an efficacy of 61% for NBQX, approximately 16 with 35% for PNQX and approximately 6 with 61% for NS377. GYKI 52466 did not significantly affect NMDA responses, whereas MK-801 showed NMDA specificity in vivo.  相似文献   

9.
10.
The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.  相似文献   

11.
The participation of NMDA and non-NMDA receptors in domoic acid-induced neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons were exposed to 300 microM L-glutamate or 10 microM domoate for 2 h in physiologic buffer at 22 degrees C followed by a 22-h incubation in 37 degrees C conditioned growth media. Excitotoxic injury was monitored as a function of time by measurement of lactate dehydrogenase (LDH) activity in both the exposure buffer and the conditioned media. Glutamate and domoate evoked, respectively, 50 and 65% of the total 24-h increment in LDH efflux after 2 h. Hyperosmolar conditions prevented this early response but did not significantly alter the extent of neuronal injury observed at 24 h. The competitive NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid and the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) reduced glutamate-induced LDH efflux totals by 73 and 27%, respectively, whereas, together, these glutamate receptor antagonists completely prevented neuronal injury. Domoate toxicity was reduced 65-77% when CGCs were treated with competitive and noncompetitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and adenosine from neurons. Domoate-stimulated EAA release occurred almost exclusively through mechanisms related to cell swelling and reversal of the glutamate transporter. Thus, whereas glutamate-induced injury is mediated primarily through NMDA receptors, the full extent of neurodegeneration is produced by the coactivation of both NMDA and non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily through NMDA receptors, which are activated secondarily as a consequence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated stimulation of EAA efflux.  相似文献   

12.
In contrast with the neuroprotective efficacy of competitive and non-competitive N-methyl-D-aspartate (NMDA) antagonists versus NMDA neurotoxicity, reported neuroprotective effects of non-NMDA antagonists in limiting alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) toxicity have been less robust. We tested the effect of the non-competitive AMPA receptor antagonist LY 300168 (GYKI 53655; E. Lilly) (0.25 or 2.5 mg/kg per dose i.p. x 3 doses vs. vehicle) on AMPA-induced excitotoxic injury in postnatal day 7 (P7) rats. To assess specificity, we tested the effect of LY 300168 (2.5 mg/kg per dose x 3 doses) on NMDA-induced excitotoxic injury. P7 rats received right intrahippocampal injections of either (S)-AMPA (2.5 nmol, n = 67) or NMDA (12.5 nmol, n = 11). Injection of AMPA resulted in right hippocampal atrophy with pyramidal cell loss. LY 300168 treatment produced dose-dependent attenuation of AMPA-induced right hippocampal injury; based on comparisons with left hippocampal volumes, 2.5 nmol AMPA resulted in 42 +/- 3% (mean +/- SEM) right hippocampal volume loss in controls, but only 10 +/- 5% after LY 300168 2.5 mg/kg per dose (P < 0.001; ANOVA). LY 300168 had no effect on NMDA-induced hippocampal injury. The data support the hypothesis that drugs that allosterically regulate AMPA receptor activity can modulate the response of immature brain to AMPA-mediated injury.  相似文献   

13.
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.  相似文献   

14.
Excitatory amino acid neurotoxicity has been proposed to cause the neostriatal neuronal degeneration of Huntington's disease (HD); N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate receptors have been hypothesized to play important roles in this process. We have recently reported a loss of neurons in layer VI of the cerebral cortex in HD. Using quantitative autoradiographic methods, we have now measured NMDA, AMPA, and kainate receptor binding in the frontal cerebral cortex of the brains of controls and individuals with HD. We find no change in NMDA receptor binding but a selective decrease in kainate and AMPA receptor binding in layer VI. These data suggest that cerebral cortical neurons possessing kainate or AMPA receptors may be selectively vulnerable in individuals with HD.  相似文献   

15.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy.  相似文献   

16.
Intracerebroventricular administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) or kainate caused a rise of the temperature of the brain and the rectum in urethane-anesthetized rats. An AMPA-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), significantly suppressed the AMPA- and kainate-induced rises of brain and rectal temperatures. An N-methyl-d-aspartate receptor antagonist, MK-801, also suppressed the rises of the brain and rectal temperatures induced by AMPA or kainate, but the profiles of the suppressive effects of MK-801 were different between rats treated with AMPA and kainate. An antipyretic agent, indomethacin, completely suppressed the AMPA-induced rises of brain and rectal temperatures. Although indomethacin completely suppressed the kainate-induced rise of the rectal temperature as well, the brain temperature was still raised. These findings suggest that distinct mechanisms may be involved in the temperature rise of the brain and the rectum mediated through AMPA and kainate receptor stimulation.  相似文献   

17.
The selective non-competitive N-methyl-D-aspartate (NMDA) antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo(a, d)cyclohepten-5,10-imine maleate ((+)MK-801) led to a dose-dependent increase in locomotor activity in mice pretreated with a combination of reserpine and alpha-methyl-para-tyrosine (alpha-MT). A selective and potent sigma receptor "antagonist" NE-100 (N, N-dipropyl-2- [4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine monohydrochloride), which did not per se affect spontaneous locomotor activity, did not prevent the locomotor stimulatory effects of (+)MK-801. Sulpiride, a dopamine D2 receptor antagonist, and clozapine, a dopamine D4 receptor antagonist, which decreased spontaneous locomotor activity, did not prevent the locomotor stimulatory effects of (+)MK-801. The sigma receptor "agonists" (+)N-allynormetazocine [(+)SKF10,047], (+)pentazocine and (+)-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine [(+)3-PPP], which did not per se affect spontaneous locomotor activity, did dose-dependently enhance the hyperlocomotion induced by (+)MK-801. The enhancement of (+)MK-801-induced the hyperlocomotion by (+)SKF10,047, (+)pentazocine and (+)3-PPP was completely blocked by NE-100. The enhancement of (+)MK-801-induced hyperlocomotion by (+)pentazocine was not affected by treatment with sulpiride and clozapine. As sigma ligands can markedly attenuate NMDA antagonist-induced behavior, the major physiological role of sigma receptors in vivo might be to modulate functions of the NMDA receptor ion channel complex.  相似文献   

18.
We investigated the effects of glutamate on cell proliferation and the expression of basic fibroblast growth factor (bFGF) and its receptor (FGF-R1) mRNA in cultured rat retinal pigment epithelial (RPE) cells. The number of primary RPE cells was significantly higher after treatment with 0.2 to 1.0 mM glutamate (maximum at 1.0 mM) for 7 days than in controls. Glutamate-stimulated cell proliferation was abolished by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), but not by 6,7-dinitroquinoxaline-2,3-dione or L(+)-2-amino-3-phosphonopropionic acid. Proliferation was increased to a similar extent by N-methyl-D-aspartate (NMDA), but not by kainate, alpha-amino-3-hydroxy-3-methyl-4-isoxazolepropionic acid or trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. NMDA-receptor-like immunoreactivity was detected in most cells cultured. Treatment of cells with glutamate increased the level of bFGF mRNA and, to a lesser extent, that of FGF-R1 mRNA, which peaked 2 and 4 days, respectively, after glutamate was added. The increase in bFGF mRNA induced by glutamate was inhibited by MK-801. These findings suggest that glutamate might stimulate proliferation of RPE cells through activation of NMDA receptors and expression of bFGF and further suggest that glutamate may be involved in the proliferative changes of RPE cells in retinal wound healing.  相似文献   

19.
The neuroprotective properties of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (MK-801) and the non-NMDA antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and alpha-methyl-4-carboxyphenylglycine (MCPG) were evaluated against neuronal injury produced by the intraspinal injection of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Forty-nine animals were divided into eight groups in order to evaluate the effects of different drug combinations: (a) NMDA; (b) NMDA + MCPG; (c) NMDA + NBQX; (d) NMDA + MK-801; (e) AMPA; (f) AMPA + MCPG; (g) AMPA + MK-801; and (h) AMPA + NBQX. Drugs were microinjected into spinal segments T12-L3 through a micropipette attached to a Hamilton microliter syringe. Spinal cords were evaluated after a survival period of 48 h at which time NMDA and AMPA were found to produce morphological changes over the concentration ranges of 125-500 mM and 75-500 microM, respectively. Neuronal loss following injections of NMDA + MK-801 or AMPA + NBQX was significantly less than that following injections of NMDA or AMPA alone. By contrast, neuronal loss following co-injections of NMDA or AMPA with inappropriate antagonists, i.e., NMDA + NBQX/MCPG or AMPA + MCPG/MK-801, was not significantly different from that produced by NMDA or AMPA. The results suggest that elevations in spinal levels of glutamate followed by prolonged activation of NMDA and AMPA receptor subtypes initiate an excitotoxic cascade resulting in neuronal injury. Blockade of NMDA and AMPA effects by MK-801 and NBQX respectively confirms the well documented neuroprotective effects of these drugs and lends support to the potential importance of NMDA and especially AMPA receptor antagonists as therapeutic agents in the treatment of acute spinal cord injury.  相似文献   

20.
The neurotoxic fragment corresponding to residues 25-35 of the beta-amyloid (A beta) peptide [A beta-(25-35)] has been shown to exert effects on (+)-[3H]5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate ([3H]MK-801) binding to the cation channel of the N-methyl-D-aspartate (NMDA) receptor. In the present study, we investigated whether the amidated and carboxylic acid C-terminated forms of A beta-(25-35) [A beta-(25-35-NH2) and A beta-(25-35-COOH), respectively] exert effects on other excitatory amino acid receptor and cation channel types in rat cortical membranes. Both A beta-(25-35-NH2) and A beta-(25-35-COOH) gave statistically significant dose-dependent inhibitions of [3H]glutamate and [3H]glycine binding to the agonist recognition sites of the NMDA receptor. Ten microM A beta-(25-35-NH2) and A beta-(25-35-COOH) gave 25% and 20% inhibitions of [3H]glutamate binding and 75% and 70% inhibitions of [3H]glycine binding, respectively. A beta-(25-35-NH2), but not A beta-(25-35-COOH), gave a small (ca. 17% at 10 microM) statistically significant increase of [3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding. [3H]kainate binding was not significantly affected by either peptide. Similarly, neither peptide affected either the maximal level or EC50 value for calcium stimulation of [3H]nitrendipine binding. It is concluded that A beta-(25-35) shows slight affinity for the agonist recognition sites of the NMDA receptor, but not for other excitatory amino acid receptor types or for L-type voltage-dependent calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号