首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of feeding dietary supplements of monensin and sodium bicarbonate singly or in combination on production of rumen volatile fatty acids, nitrogen balance, and rumen water kinetics were studied. Four rumen fistulated steers were fed a diet (50% concentrate mix and 50% corn silage) ad libitum in a 4 X 4 Latin square design (21-day periods) with a 2 X 2 factorial arrangement of treatments. Sodium bicarbonate increased feed intake, water intake, rumen pH, fluid dilution rate, and decreased both molar proportion and production rate of propionate in the rumen. Alteration of the ratio of acetate to propionate reflects the large decrease in propionate production relative to the small increase in acetate production. In contrast, monensin did not alter significantly rumen fluid dilution rate or ruminal pH but did decrease the molar proportion of acetate and increase that of propionate. Monensin increased production of both acetate and propionate in the rumen; however, the large increase in propionate production appears to account for more of the increase in molar proportion of propionate in the rumen. Increases in total volatile fatty acid production per kilogram of dry matter consumed with monensin supplementation appears to result from decrease in feed intake, thereby increasing ruminal retention time of dry matter and potentially the extent of digestion. Efficiency of nitrogen utilization was not altered by either sodium bicarbonate or monensin.  相似文献   

2.
Two experiments were conducted to examine dietary effects of .8% sodium bicarbonate and 1.4 kg/d of alfalfa hay on performance and rumen metabolism of lactating dairy cows fed 50% wheat silage and 50% concentrate (dry basis). In Experiment 1 with 12 midlactation Holsteins in a 4 X 4 Latin square design, intake, milk production, and milk composition were not affected by treatment. Dietary sodium bicarbonate and alfalfa hay did not alter blood, rumen, or fecal pH. Rumen volatile fatty acid pattern was not affected by sodium bicarbonate, but addition of hay resulted in higher molar percentage propionate and lower acetate: propionate ratios. In Experiment 2 with 32 early lactation cows (20 Holsteins and 12 Jerseys) in a complete randomized block design, supplementation of sodium bicarbonate, alfalfa hay, or both did not affect intake, milk production, or milk composition in the first 8 wk of lactation. Blood, rumen, and fecal pH were not affected by treatment. Dietary sodium bicarbonate did not alter ruminal volatile fatty acid profile, whereas addition of hay increased molar proportion acetate and decreased molar proportion butyrate. A shift in rumen fermentation was observed across treatments from wk 1 through 8 postpartum with molar proportions of acetate and butyrate increasing and molar proportion of propionate decreasing.  相似文献   

3.
The objective of this study was to investigate the effects of tallow and choice white grease (CWG) fed at 0, 2, and 4% of the diet dry matter (DM) on rumen fermentation and performance of dairy cows when corn silage is the sole forage source. Fifteen midlactation Holstein cows were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments were 0% fat (control), 2% tallow, 2% CWG, 4% tallow, and 4% CWG (DM basis). The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (DM basis). Cows were allowed ad libitum consumption of diets fed twice daily as total mixed rations. Cows fed supplemental fat had lower DM intake and produced less milk and milk fat than cows fed the control diet. Feeding 4% fat reduced milk production and milk fat yield relative to feeding 2% fat. Treatments had little effect on the concentration of trans-octadecenoic acids in milk fat. Total trans fatty acids were poorly related to changes in milk fat percentage. Ruminal pH and total volatile fatty acids concentration were not affected by supplemental fat. The acetate:propionate ratio, NH3-N, and numbers of protozoa in the rumen were significantly decreased when fat was added to the diets. Source of dietary fat did not affect rumen parameters. There was no treatment effect on in situ corn silage DM and neutral detergent fiber disappearance. Including fat in corn silage-based diets had negative effects on milk production and rumen fermentation regardless of the source or level of supplemental fat.  相似文献   

4.
The influence of feeding whole cottonseed (WCS) containing elevated concentrations of free fatty acids (FFA) in the oil on ruminal fermentation and amino acid (AA) flow to the abomasum was evaluated in a 4 x 4 Latin square trial. Four ruminally and abomasally cannulated Holstein steers were fed diets containing 12.5% of dry matter as WCS with concentrations of 8.0, 11.3, 14.7, or 18.0% FFA in the oil. Intake, ruminal digestibility, and flow to the abomasum of dry matter, organic matter, and acid detergent fiber were not affected by FFA level of WCS. Intake of neutral detergent fiber and total kilograms of neutral detergent fiber digested in the rumen were similar for all treatments. Ruminal neutral detergent fiber digestibility was lower for 8 and 14.7% FFA, resulting in a cubic effect on flow to the abomasum. Ruminal pH, molar proportions of isobutyrate, and total branched-chain volatile fatty acids (VFA) decreased linearly, whereas molar proportions of acetate and acetate:propionate ratio increased linearly as FFA in WCS increased. Total VFA were lower, and molar proportions of propionate were higher, for 8 and 14.7% FFA, resulting in a cubic effect. Intake of N, total N flow, and nonmicrobial N flow to the abomasum were similar among treatments. Flow of microbial N was lower for the 11.3% FFA treatment, resulting in a quadratic response. Only nonsignificant differences were observed in AA flow to the abomasum. Results of this trial indicate that WCS with FFA up to 18% may result in small changes in rumen fermentation.  相似文献   

5.
Seventy-five lactating cows were in three experiments to determine the effect of dietary fiber content on ration intake, milk and milk fat production, ration digestibility, nitrogen utilization, and ruminal volatile fatty acids. With corn or barley silage as the source of forage, four treatment groups consumed rations averaging 11.8, 14.5, 17.5, and 20.6% crude fiber and 14.3, 17.5, 20.0, and 23.9% acid detergent fiber dry basis. Fiber intake was controlled by the amount and fiber content of concentrate offered or by silages with different grain content. With corn silage, dry matter intake was not altered by dietary fiber, but dry matter intake was lower when additional fiber was fed with barlev silage. Linear regressions best described effects of dietary fiber on milk production and milk fat content. Milk production declined .39 and .36 kg and milk fat test increased .072 and .067% for each percentage increase in crude and acid detergent fiber. Ration digestibility, determined by lignin ratio, was less for barley silage than corn silage. Narrowing acetate: propionate ratios were evident when dietary fiber was lowered. From these experiments with silage based rations, either crude or acid-detergent fiber content of forage adequately describes feeds to serve as a basis for practically balancing rations for lactating cows.  相似文献   

6.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

7.
We evaluated effects of wet corn gluten feed (WCGF) and a novel product (SHSL) containing raw soybean hulls and corn steep liquor on performance and digestion in lactating dairy cows. In Experiment 1, 46 multiparous Holstein cows were assigned to control (C), WCGF (20% of diet DM), or SHSL (20% of diet DM). Diets were fed as a total mixed ration beginning after calving. The C diet contained (dry matter [DM] basis) 30% alfalfa hay, 15% corn silage, 32% corn, 9.3% whole cottonseed, 4.4% solvent soybean meal (SBM), and 3.3% expeller SBM. The WCGF replaced 10% alfalfa hay, 5% corn silage, and 5% corn grain, while expeller SBM replaced solvent SBM to maintain diet rumen undegradable protein. The SHSL replaced 10% alfalfa hay, 5% corn silage, 3% solvent SBM, and 2% corn. Dietary crude protein averaged 18.4%. Milk, energy-corrected milk (ECM), DM intake (DMI), and ECM/DMI were similar among diets during the first 13 wk of lactation. During wk 14 through 30 postpartum, WCGF and SHSL improved milk, ECM, milk component yield, and ECM/DMI. In Experiment 2, 6 cows were used to evaluate digestibility and rumen traits. Dry matter intake and total tract digestibilities of DM, fiber, and crude protein were not different among diets. Diets did not affect ruminal liquid dilution rate, pH, or concentrations of total volatile fatty acids or ammonia, but acetate:propionate was higher for C (3.38) than for WCGF (2.79) or SHSL (2.89). The WCGF and SHSL products can serve as alternative feedstuffs in diets fed to lactating dairy cattle.  相似文献   

8.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

9.
Interactions of sources and processing methods for nonstructural carbohydrates may affect the efficiency of animal production. Five rumen-cannulated cows in late lactation were placed in a 5 × 5 Latin square design and fed experimental diets for 2 wk. In the production trial, 54 cows were fed the experimental diets for 12 wk beginning at d 60 in milk. Diets contained 24% corn silage and 22% hay, averaging 20% alfalfa and 2% grass but being adjusted as needed to maintain dietary concentrations of 36% neutral detergent fiber. The control diet contained steam-flaked corn (SFC) and the other diets contained either finely (FGC; 0.8 mm) or coarsely ground corn (CGC; 1.9 mm), factorialized with or without 3.5% liquid feed (LF). The LF diets provided 1.03% of dietary dry matter as supplemental sugar. The FGC decreased rumen pH and concentration of NH3N compared with CGC. The SFC and FGC tended to increase the molar percentage of ruminal propionate and decrease the acetate:propionate ratio. The LF increased molar percentage of ruminal butyrate with FGC but not CGC. The LF tended to decrease starch digestibility with the CGC but not with the FGC. As expected, the SFC and FGC increased total tract starch digestibility. The DMI and milk yield were similar among dietary treatments. Compared with ground corn diets, the SFC tended to decrease milk fat percentage; thus, 3.5% fat-corrected milk and feed efficiency were decreased with SFC. The LF decreased milk protein percentage but had no effect on milk protein yield. The SFC compared with dry ground corn decreased the concentration of milk urea nitrogen. Sugar supplementation using LF appeared to be more beneficial with FGC than CGC. Increasing the surface area by finely grinding corn is important for starch digestibility and optimal utilization of nutrients.  相似文献   

10.
Holstein steers were fed corn silage supplemented with either wet or dried brewers' grains to determine effects of heat drying commercial brewers' grains. Four rumen-fistulated steers were fed a 12.5% crude protein diet in a single reversal design experiment. Brewers' grains supplied 45% of the protein of the diet. Bacterial numbers, concentration of ciliated protozoa, and ammonia concentration in the rumen were higher, and rumen pH was lower, for steers fed wet brewers' grains. Concentrations of rumen volatile fatty acids were similar for both diets. Ruminal digestibility of dry matter decreased when wet versus dried brewers' grains were fed (56.9 versus 39.3%). The rate of dry matter passage from the rumen was faster with wet brewers' grains. In Experiment 2, 12 steers were in a 2 X 2 factorial design. Diets contained wet or dried brewers' grains supplemented at 22 or 40% of the diet dry matter (12.5 and 14.5% crude protein). Nitrogen retention was increased in steers fed the higher crude protein diet. Apparent digestible nitrogen, acid detergent fiber nitrogen, and nitrogen retention were higher with wet versus dried brewers' grains. Plasma essential and nonessential amino acids were also higher in steers fed wet brewers' grains. Alteration in microbial numbers, fermentation measurements, and nitrogen utilization were associated with more soluble nitrogen with wet (13.4%) versus dried (3.3%) brewers' grains.  相似文献   

11.
Improving energy supply to late gestation and early postpartum dairy cows.   总被引:8,自引:0,他引:8  
Sixty-five multiparous Holstein cows were used to test the effects of feeding diets of varied ruminal carbohydrate availability during the transition period on dry matter intake, blood metabolites, and lactational performance. Cows received total mixed rations containing either cracked corn or steam-flaked corn beginning 28 d prior to expected calving date. At parturition, cows were assigned to a postpartum total mixed ration that contained either cracked corn or steam-flacked corn. Diets were fed until 63 d in milk. No treatment effects on prepartum or postpartum dry matter intake, body weight, and body condition score were observed. Cows fed steam-flaked corn had lower blood urea N concentrations during the prepartum period and lower plasma nonesterified fatty acid concentrations during the prepartum and postpartum periods. Cows fed steam-flaked corn postpartum produced 2.3 kg/d more milk than cows fed cracked corn during the first 63 d in milk. Fat corrected milk showed no treatment effect. Seven cows were used to evaluate treatment effects on ruminal fermentation and digesta kinetics. Prepartum and postpartum treatments had minimal effects on ruminal fermentation. Feeding steam-flaked corn prepartum decreased apparent fiber digestibility and ruminal NH3 N. Feeding steam-flaked corn postpartum decreased the acetate to propionate ratio. Prepartum and postpartum treatments did not affect digesta kinetics. An increase in ruminal carbohydrate availability during the postpartum period enhanced milk production, but had variable results on ruminal fermentation.  相似文献   

12.
《Journal of dairy science》1986,69(5):1355-1365
In Experiment 1, 20 lambs (36 kg) were fed five diets containing 0, 5, or 10% pecan shells or hulls to evaluate digestion and nitrogen balance. Digestion was not depressed by diets containing 5% shells. Protein digestibility was not reduced and nitrogen balance was higher for lambs fed 5% hulls than for lambs in other groups. In Experiment 2, 8 Holstein cows (29.3 kg milk/d) were assigned to two diets: basal and basal with 5% shells in the grain mix. Cows fed diets containing shells produced the same amount of milk and milk fat as control cows. In Experiment 3, 12 Holstein cows (27.3 kg milk/d) were assigned to the same two diets used in Experiment 2 and a third treatment received 5% pecan hulls in the grain mix. Cows fed shells or hull diets reduced concentrate intake and milk production. In Experiment 4, 12 Hereford × Angus steers (474.5 kg) were fed diets used in Experiment 3 to examine rumen fermentation, digestion, and passage rates. Steers fed hulls had lower rumen ammonia N and higher rumen pH compared with steers fed the basal diet. Total rumen volatile fatty acid concentration was not different among treatments. Generally, rumen fluid from steers fed hulls had higher proportions of acetate and lower porportions of butyrate. Rumen fluid and particulate passage rates and digestion measurements were not affected by addition of shells or hulls.  相似文献   

13.
Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives investigated contained lauric acid, myristic acid, linseed oil, and calcium fumarate. These additives were included at 0.4, 1.2, 1.5, and 0.7% of dietary dry matter, respectively (treatment ADD). Experimental fat sources were exchanged for a rumen inert source of fat in the control diet (treatment CON) to maintain isolipidic rations. Cows (experiment 1, n = 20; experiment 2, n = 12) were fed restricted amounts of feed to avoid confounding effects of dry matter intake on methane production. In experiment 1, methane production and energy balance were studied using open-circuit indirect calorimetry. In experiment 2, 10 rumen-fistulated animals were used to measure rumen fermentation characteristics. In both experiments animal performance was monitored. The inclusion of dietary additives decreased methane emissions (g/d) by 10%. Milk yield and milk fat content tended to be lower for ADD in experiment 1. In experiment 2, milk production was not affected by ADD, but milk fat content was lower. Fat- and protein-corrected milk was lower for ADD in both experiments. Milk urea nitrogen content was lowered by ADD in experiment 1 and tended to be lower in experiment 2. Apparent total tract digestibility of fat, but not that of starch or neutral detergent fiber, was higher for ADD. Energy retention did not differ between treatments. The decrease in methane production (g/d) was not evident when methane emission was expressed per kilogram of milk produced. Feeding ADD resulted in increases of C12:0 and C14:0 and the intermediates of linseed oil biohydrogenation in milk in both experiments. In experiment 2, ADD-fed cows tended to have a decreased number of protozoa in rumen fluid when compared with that in control cows. Total volatile fatty acid concentrations were lower for ADD, whereas molar proportions of propionate increased at the expense of acetate and butyrate.  相似文献   

14.
The ability of mineral salts to alter rumen fermentation, rumen fluid dilution rate, milk fat synthesis, and nutrient utilization was investigated in dairy cows fed a high-concentrate, milk-fat depressing diet. Four rumen-fistulated Holstein cows were in a 4 X 4 Latin square design. Treatments consisted of: 1) basal (25% corn silage: 75% concentrate on a dry matter basis), 2) basal + 2.0% sodium chloride, 3) basal + 2.0% sodium bicarbonate, and 4) basal + 2.4% limestone. Addition of limestone to the basal diet reduced dry matter intake but increased efficiency of dietary nutrient utilization for milk synthesis. Sodium bicarbonate increased synthesis of milk fat. Sodium chloride also tended to increase milk fat synthesis whereas limestone had no effect. Milk yields (kg/day) and milk fat (%) for the four treatments were 1) 29.5, 2.40; 2) 29.3, 2.66; 3) 28.9, 3.26; and 4) 29.2, 2.32. Rumen fluid pH, dilution rate (%/hour), and molar percentage of acetate and propionate were: 1) 5.98, 10.3, 49 and 39; 2) 6.02, 12.4, 55 and 32; 3) 6.16, 12.2, 58 and 25; and 4) 5.92, 10.7, 51 and 38. Limestone was totally ineffective in altering ruminal pH, fluid dilution rate, molar percentages of acetate and propionate, and synthesis of milk fat. Improved feed efficiency for milk production after addition of limestone was related to an increase in starch digestion compared to the basal ration (95 versus 88%).  相似文献   

15.
Twelve second-lactation Holstein cows were used in a replicated Latin square design to examine the effects of dietary wheat on lactation performance, ruminal fermentation, and whole-tract nutrient digestibility. Cows were randomly assigned to 1 of 3 diets containing 0, 10, and 20% steam-rolled wheat on a dry matter basis at the expense of steam-rolled barley. Cows were fed and milked twice daily. Six of the cows were ruminally cannulated, and rumen fluid samples were obtained from these cows 18 times during the last 2 d of each period. Treatment did not affect dry matter intake (20.9 kg/d) or yields of milk (36.1 kg/d) or milk components (1.25, 1.10, and 1.67 kg/d for fat, protein, and lactose, respectively). Fat percentage was not different among the treatments but protein content of the milk was reduced by the wheat treatments, and was lower when 10% wheat was included in the diet versus 20%. Cows fed wheat had lower ruminal pH (6.36 vs. 6.44) and greater NH3-N (11.49 vs. 8.10 mg/dL) and total volatile fatty acids (121 vs. 113 mM) concentrations than cows not fed wheat. The acetate:propionate ratio was lower for cows fed wheat than for those not fed wheat (3.21 vs. 3.36), but was not different between cows fed 10% versus 20% wheat. Wheat feeding did not alter whole-tract apparent digestibility of dry matter, crude protein, acid detergent fiber, and neutral detergent fiber. Results of this study show that up to 20% steam-rolled wheat can be included in the diet of dairy cows without compromising production or causing subacute ruminal acidosis if adequate fiber is provided and the diets are properly formulated and mixed.  相似文献   

16.
The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30°C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter.  相似文献   

17.
Potato meal was ensiled with a grass-legume forage at 7.5% of fresh weight and substituted for ground corn in concentrate mixtures at 0, 15, and 30% fresh weight. Production, digestion, and nitrogen balance trials were conducted on 12 lactating Holstein cows fed individually for ad libitum intake. Potato meal was consumed readily in the quantities offered. Mean daily milk production for cows receiving the hay-crop silage ensiled with potato meal was 28.6 compared with 26.3 kg for cows consuming untreated silage. Molar percentages of acetate in rumen were lower and propionate higher for cows receiving hay-crop silage ensiled with potato meal. Digestibility coefficients for dry matter, organic matter, acid detergent fiber, neutral detergent fiber, crude protein, and gross energy all tended to be lower for the silage with added potato meal. Nitrogen balance was higher for cows consuming silage with potato meal. When potato meal was added to concentrate mixes replacing corn at 0, 15, and 30%, milk production was 27.5, 26.8, and 28.0 kg/day. Potato meal can be used advantageously as a silage additive and can be included in concentrate mixtures up to 30% of the fresh weight.  相似文献   

18.
This study evaluated the effects of feeding ground (G) versus pelleted (P) total mixed ration (PTMR) on digestibility and milk production performance of mid‐lactation dairy cows over a 42‐days period. Results showed that, compared to GTMR, feeding PTMR increased dry matter intake and digestibility, ruminal propionate proportions and milk protein percentage, but decreased acetate‐to‐propionate ratio, milk fat percentage and aldehydes, acids, alcohols, and aromatic hydrocarbon proportions in milk. The PTMR did not improve milk yield but accelerated live weight recovery of cows and led to acidosis risk in lactating cows due to negative effects on rumen fermentation.  相似文献   

19.
Four rumen fistulated Holstein steers were used to assess the effects of intraruminal salt infusions on various rumen characteristics including volatile fatty acid production rates. In the first experiment, the basal diet consisted of 75% concentrate and 25% corn silage (high-grain diet). The experimental design was a 4 X 4 Latin square in which the four treatments were: 1) intraruminal infusion of 8 liters of water (control) or 8 liters of water plus 2) 288 g sodium bicarbonate, 3) 200 g sodium chloride, or 4) 600 g sodium chloride. In the second experiment, procedures were the same except the basal diet consisted of 64% alfalfa hay and 18% each of corn silage and concentrate (high-roughage diet). When the high-grain basal diet was fed, intraruminal infusions of mineral salts increased dilution rate of rumen fluid. Total fluid flow from the rumen also was increased by salt infusions with sodium bicarbonate and the most sodium chloride from (600 g/day) exerting greatest effects for both dietary regimens. Salt infusions reduced the molar percentage of rumen propionate and increased the molar percentage of acetate when the high-grain diet was fed. These same treatments were without effect on molar percentages of rumen acids when the high-roughage diet was fed. The change in the molar percentages of acetate and propionate on the high-grain ration was solely from reduction in propionate production. The lower production of propionate, from salt infusions, may have occurred because of the washout of readily fermentable materials. Dry matter disappearance from feeds placed in dacron bags and suspended in the rumen was unaffected by infusion of mineral salts.  相似文献   

20.
Forty Holstein cows were used in an 8-wk randomized trial to evaluate the effects of feeding combinations of forages with improved fiber digestibility on performance during early lactation. Treatments were arranged as a 2 × 2 factorial to include silage from normal (NCS) or brown midrib (BMR) corn silage with or without 10% Tifton 85 bermudagrass hay (T85). In a simultaneous digestion trial, degradation and passage kinetics and ruminal fermentation parameters were evaluated in a 4 × 4 Latin square design trial using late-lactation Holstein cows fitted with ruminal cannulas. Dry matter intake (DMI) and neutral detergent fiber (NDF) intake were greater with BMR than with NCS; however, milk yield and composition were similar among corn silage types. Inclusion of T85 reduced milk yield but supported higher milk fat percentage, resulting in similar yields of energy-corrected milk. Blood glucose concentrations were higher for BMR compared with NCS, and inclusion of T85 increased blood urea N concentrations. Treatments did not alter liquid or solid phase passage rates or rumen turnover. Corn silage type did not affect ruminal pH or volatile fatty acid concentrations, but inclusion of T85 increased pH and molar proportion of acetate but decreased butyrate. Molar proportions of propionate were greater for NCS and T85 compared with BMR and T85, resulting in an interaction. Results of this trial indicate that combinations of forages with improved fiber digestibility can be used to support intake and performance of cows during early lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号