首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In this paper the role of organic manure in intensified farming systems in the SAT of West-Africa is discussed. Different aspects are treated: its function as a source of plant nutrients, its effects on soil physical and on soil chemical properties. It is concluded that often the major effect is through increased nutrient supply, but that in combination with chemical fertilizer — particularly nitrogen — it serves to counteract the negative effects of these fertilizers, particularly acidification and the increased removal of nutrients other than the one applied in the fertilizer.Insufficient organic material appears to be available to realize the required production increase and prevent the negative effects of nitrogen fertilizers. However, application of chemical fertilizer alone can lead to sustainable production systems provided export and losses of all nutrient elements are sufficiently compensated and acidification is avoided by using the correct type of nitrogen fertilizer, possibly in combination with liming.  相似文献   

2.
Application of chemical fertilizers and farmyard manure affects crop productivity and improves nutrient cycling within soil–plant systems, but the magnitude varies with soil-climatic conditions. A long-term (1982–2004) field experiment was conducted to investigate the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers and farmyard swine manure (M) on seed and straw yield, protein concentration, and N uptake in the seed and straw of 19-year winter wheat (Triticum aestivum L.) and four-year oilseed (three-year canola, Brassica napus L. in 1987, 2000 and 2003; one-year flax, Linum usitatisimum L. in 1991), accumulation of nitrate-N (NO3-N) in the soil profile (0–210 cm), and N balance sheet on a Huangmian soil (calcaric cambisols, FAO) near Tianshui, Gansu, China. The two main plot treatments were without and with farmyard swine manure (M); sub-plot treatments were control (Ck), N, NP, and NPK.␣The average seed yield decreased in the order MNPK ≥ MNP > MN ≥ NPK ≥ NP > M > N > Ck. The average effect of manure and fertilizers on seed yield was in the order M > N > P > K. The seed yield increase was 20.5% for M, 17.8% for N, 14.2% for P, and 2.9 % for K treatment. Seed yield response to fertilizers was much greater for N and P than for K, and it was much greater for no manure than for manure treatment. The response of straw yield to fertilization treatments was usually similar to that of seed yield. The N fertilizer and manure significantly increased protein concentration and N uptake plant. From the standpoint of increasing crop yield and seed quality, MNPK was the best fertilization strategy. Annual applications of N fertilizer and manure for 23 successive years had a marked effect on NO3-N accumulation in the 0–210 cm soil profile. Accumulation of NO3-N in the deeper soil layers with application of N fertilizer and manure is regarded as a potential danger, because of pollution of the soil environment and of groundwater. Application of N fertilizer in combination with P and/or K fertilizers reduced residual soil NO3-N significantly compared with N fertilizer alone in both no manure and manure plots. The findings suggest that integrated and balanced application of N, P, and K fertilizers and␣manure at proper rates is important for protecting soil and groundwater from potential NO3-N pollution and for maintaining high crop productivity in the rainfed region of Northwestern China.  相似文献   

3.
A survey on current fertilizer practices and their effects on soil fertility and soil salinity was conducted from 1996 to 2000 in Beijing Province, a major vegetable production area in the North China Plain. Inputs of the major nutrients (NPK) and fertilizer application methods and sources for different vegetable species and field conditions were evaluated. Excessive N and P fertilizer application, often up to about 5 times the crop requirement in the case of N, was very common, especially for high-value crops. Potassium supply may have been inadequate for some crops such as leafy vegetables. Urea, diammonium orthophosphate ((NH4)2HPO4) and chicken manure were the major nutrient sources for vegetable production in the region. Over 50% of N, 60% of P and nearly 90% of K applied originated from organic manure. Total N application rate for open-field Chinese cabbage from organic manure and inorganic fertilizers ranged from 300 to 900 kg N ha–1 on 78% of the farms surveyed. More than 35% of the surveyed greenhouse-grown tomato crops received > 1000 kg N ha–1 from organic and inorganic sources. A negative K balance (applied K minus K removed by the crop) was found in two-thirds of the surveyed fields of open-field Chinese cabbage and half of the surveyed fields of greenhouse-grown tomato. Plant-available N, P and K increased with increasing length of the period the greenhouse soils had been used for vegetable production. Similarly, soil salinity increased more in greenhouse soils than in open-field soils. The results indicate that balanced NPK fertilizer use and maintenance of soil quality are important for the development of sustainable vegetable production systems in this region.  相似文献   

4.
The efficiency of mint-residue, composted alone and amended with starter nutrients, microbial culture and soil suspension (hereafter termed amended compost) was compared with farm yard manure and inorganic fertilizer on the yield of Japanese mint (Mentha arvensis L.) and improvement of soil fertility. Herbage, essential oil yield, nutrient uptake of Japanese mint and soil available nutrients were significantly enhanced due to application of amended compost as compared to nonamended compost, farm yard manure and inorganic fertilizer. Organic fertilized soils maintained significantly higher available nutrients throughout the crop growth period as compared to inorganic fertilized soils. No additional improvement in yields and soil fertility was recorded with combined application of compost and inorganic fertilizer in 1:1 ratio as against addition of compost alone. Advantage of such combinations was recorded in case of farm yard manure. Results of the study suggested possibilities for nutrient recycling through composted mint-residue for supplementing the fertilizers requirement of Japanese mint.  相似文献   

5.
An incubation experiment to determine the effects of organic and chemical N fertilizers on methane (CH4) production potential in a Chinese flooded rice soil was conducted. Organic matter, added as rice straw and organic manure, increased CH4 production rate significantly. Chemical N fertilizers such as ammonium bicarbonate (AB), modified ammonium bicarbonate (MAB), and urea (U) did not show a clear effect when they were applied with rice straw. Field results may be very different because of the involvement of rice plants. Organic manure showed different promoting effects on CH4 production rate. Pig manure stimulated the production rate most, followed by chicken and cattle manure. This difference in organic manure was not related to either total C added to the system or to C/N. The study on bacteria groups related to CH4 production indicated that the different effects of organic matter may be closely related to content of easily decomposable organic matter. A significant linear relationship between CH4 production and the logarithm of the number of zymogenic bacteria was found with an r value of 0.96. This finding suggests that the number of zymogenic bacteria may be used as an index to predict CH4 production potential in flooded rice fields and other wetlands.  相似文献   

6.
The influence of N, P and K application through inorganic and organic fertilizers on N recovery in crop plants and its balance in the soil-plant (maize-wheat-cowpea fodder) was studied for the first 22 years of a long-term experiment at Punjab Agricultural University farm, Ludhiana, India. The results showed. that N removal and apparent N recovery by both maize and wheat was directly related to the balanced application of N, P and K fertilizers. Averaged over the years, application of N alone (100% N) resulted in a recovery of 17.1% in maize and 31.7% in wheat. The application of P and K along with N almost doubled (32.8% in maize and 64.7% in wheat) the apparent N recovery in the crops. Increase in soil N concentration which was related to the build-up of soil organic carbon (OC) occurred at a very slow rate with the application of N, P and K fertilizers. Addition of farm yard manure (FYM) resulted in highest N removal in crops and build-up of soil N and OC status. Application of recommended N without P and K fertilizers resulted in relatively large amounts (64–71%) of fertilizer N lost from the surface soil as compared to that (41–49%) with N, P and K applied together. Higher rate of fertilizer application (150% NPK) resulted in comparatively greater N loss (58–62%). It was concluded that balanced and judicious use of N, P and K fertilizers coupled with the addition of any deficient element (e.g. Zn) help in minimizing N losses and environmental pollution.  相似文献   

7.
This paper examines a number of agronomic field experiments in different regions of sub-Saharan Africa to assess the associated variability in the efficiencies with which applied and available nutrients are taken up by crops under a wide range of management and environmental conditions. We consider N and P capture efficiencies (NCE and PCE, kg uptake kg−1 nutrient availability), and N and P recovery efficiencies (NRE and PRE, kg uptake kg−1 nutrient added). The analyzed cropping systems employed different soil fertility management practices that included (1) N and P mineral fertilizers (as sole or their combinations) (2) cattle manure composted then applied or applied directly to fields through animal corralling, and legume based systems separated into (3) improved fallows/cover crops-cereal sequences, and (4) grain legume-cereal rotations. Crop responses to added nutrients varied widely, which is a logical consequence of the wide diversity in the balance of production resources across regions from arid through wet tropics, coupled with an equally large array of management practices and inter-season variability. The NCE ranged from 0.05 to 0.98 kg kg−1 for the different systems (NP fertilizers, 0.16–0.98; fallow/cover crops, 0.05–0.75; animal manure, 0.10–0.74 kg kg−1), while PCE ranged from 0.09 to 0.71 kg kg−1, depending on soil conditions. The respective NREs averaged 0.38, 0.23 and 0.25 kg kg−1. Cases were found where NREs were >1 for mineral fertilizers or negative when poor quality manure immobilized soil N, while response to P was in many cases poor due to P fixation by soils. Other than good agronomy, it was apparent that flexible systems of fertilization that vary N input according to the current seasonal rainfall pattern offer opportunities for high resource capture and recovery efficiencies in semi-arid areas. We suggest the use of cropping systems modeling approaches to hasten the understanding of Africa’s complex cropping systems.  相似文献   

8.
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha−1 and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha−1 manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.  相似文献   

9.
We investigated the long-term effects (13–48 years) of crop rotations, cover crops and fertilization practices on soil organic carbon fractions. Two long-term experiments conducted on a clay loam soil in southeastern Norway were used. From the crop rotation experiment, two rotations, one with two years grain + four years grass and the second with grain alone (both for 6 years), were selected. Each rotation was divided into moderate fertilizer rate (30–40 kg N ha–1), normal fertilizer rate (80–120 kg N ha–1) and farmyard manure (FYM 60 Mg ha–1 + inorganic N at normal rate). Farmyard manure was applied only once in a 6-year rotation, while NPK was applied to every crop. The cover crop experiment with principal cereal crops consisted of three treatments: no cover, rye grass and clover as cover crops. Each cover crop was fertilized with 0 and 120 kg ha–1 N rates. Soil samples from both experiments were taken from 0–10 cm and 10–25 cm depths in the autumn of 2001. The classical extraction procedure with alkali and acid solution was used to separate humic acid (HA), fulvic acid (FA) and humin fractions, while H2O2 was used to separate black carbon (BC) from the humin fraction. The rotation of grain + grass showed a significantly higher soil organic carbon (SOC) compared with grain alone at both depths. Farmyard manure application resulted in significantly higher SOC than that of mineral fertilizer only. However, cover crops and N rates did not affect SOC significantly. Organic carbon content of FA, HA and humin fractions accounted for about 29%, 25% and 44% of SOC, respectively. The rotation of grain+grass gave a higher C content in HA and humin fractions, and a lower C in the FA fraction as compared with the rotation with grain alone. Farmyard manure increased HA and humin fractions more than did chemical fertilizers. Clover cover crop increased the C proportion of humin more than rye grass and no cover crop. No significant differences in C contents of FA, HA and humin fractions were observed between N rates. Effects of cover crop and N rates as well as fertilization with NPK on black carbon (BC) content were significant only at 10–25 cm depths. Farmyard manure increased the BC fraction compared with chemical fertilizers. Clover crop also enhanced the accumulation of the BC fraction. Application of 120 kg N ha–1 resulted in a significant increase of the BC fraction.  相似文献   

10.
The effects of lime, fertilizer and manure applications on soil organic matter status and soil physical properties are of importance to agricultural sustainability. Their effects are complex and many interactions can occur. In the short-term, liming can result in dispersion of clay colloids and formation of surface crusts. As pH is increased the surface negative charge on clay colloids increases and repulsive forces between particles dominate. However, at higher lime rates, Ca2+ concentrations and ionic strength in soil solution increase causing compression of the electrical double layer and renewed flocculation. When present in sufficient quantities, both lime and hydroxy-Al polymers formed by precipitation of exchangeable Al, can act as cementing agents bonding soil particles together and improving soil structure. Liming often causes a temporary flush of soil microbial activity but the effect of this on soil aggregation is unclear. It is suggested that, in the long-term, liming will increase crop yields, organic matter returns, soil organic matter content and thus soil aggregation. There is a need to study these relationships on existing long-term liming trials.Fertilizers are applied to soils in order to maintain or improve crop yields. In the long-term, increased crop yields and organic matter returns with regular fertilizer applications result in a higher soil organic matter content and biological activity being attained than where no fertilizers are applied. As a result, long-term fertilizer applications have been reported, in a number of cases, to cause increases in water stable aggregation, porosity, infiltration capacity and hydraulic conductivity and decreases in bulk density. Fertilizer additions can also have physico-chemical effects which influence soil aggregation. Phosphatic fertilizers and phosphoric acid can favour aggregation by the formation of Al or Ca phosphate binding agents whilst where fertilizer NH4 + accumulates in the soil at high concentrations, dispersion of clay colloids can be favoured.Additions of organic manures result in increased soil organic matter content. Many reports have shown that this results in increased water holding capacity, porosity, infiltration capacity, hydraulic conductivity and water stable aggregation and decreased bulk density and surface crusting. Problems associated with large applications of manure include dispersion caused by accumulated K+, Na+ and NH4 + in the soil and production of water-repellant substances by decomposer fungi.  相似文献   

11.
Yield response of summer cabbage (Brassica oleracea varcapitata cv. Hispi F1) to N applied as organic (activated sewage sludge derived protein [Protox] and dried blood) and inorganic (ammonium nitrate, ammonium sulphate, sodium nitrate and urea) fertilizers was compared in relation to the N availability characteristics of the materials. Effects of the nitrification inhibitor dicyandiamide (DCD) on N release, crop yield and N status were also assessed. In addition CO2 efflux was measured from amended soil to determine effects of fertilizer application on soil microbial activity. The organic N sources were mineralized quickly on application to soil and exhibited similar patterns of NH4-N depletion and NO3-N accumulation as functions of thermal-time as with mineral fertilizers. However, the yield response to organic N was marginally smaller (though not significantly) compared with mineral forms; probably because less N was released to the crop. This was reflected in smaller total N concentrations and N recoveries in plants supplied with organic fertilizer. Applied DCD increased the thermal-time for complete nitrification of NH4-N sources and raised the total N content of the crop, but had no overall effect on crop growth. In contrast to inorganic N sources which generally reduced CO2 efflux from soil, application of protein-based fertilizers increased the rate of soil microbial activity directly by raising substrate availability. Sewage sludge derived protein provided an effective alternative to mineral fertilizers for the nutrition of summer cabbage whilst minimising stress of the soil environment which may occur following the application of conventional forms of inorganic N to the soil.  相似文献   

12.
In agriculturally used peat land areas, surface water quality standards for nitrogen (N) and phosphorus (P) are frequently exceeded, but it is unclear to what extent agriculture is responsible for nutrient loading of the surface water. We quantified the contribution of different sources to the N and P loading of a ditch draining a grassland on peat soil (Terric Histosol) used for dairy farming in the Netherlands. Measurements were performed on N and P discharge at the end of the ditch, supply of N and P via inlet water, mineralization of soil organic matter, slush application, composition of the soil solution, and on N losses through denitrification in the ditch for 2 years (September 2000 to September 2002). Discharge rates at the end of the ditch were 32 kg N ha–1y–1 and 4.7 kg P ha–1y–1. For N, 43 to 50% of the discharge was accounted for by applications of fertilizers, manure and cattle droppings, 17 to 31% by mineralization of soil organic matter, 8 to 27% by nutrient-rich deeper peat layers, 8 to 9% by atmospheric deposition and 3 to 4% by inlet water. For P, these numbers were 10 to 48% for applications of fertilizers, manure and cattle droppings, 2 to 14% mineralization of soil organic matter, 33 to 82% nutrient-rich peat layers and 5 to 6% inlet water. The results of this paper demonstrate that nutrient loading of surface water in peat land areas involves several sources of nutrients, and therefore, reducing one source to reduce nutrient inputs to surface water is likely to result in modest effectiveness.  相似文献   

13.
Effects of nutrient cycling on grain yields and potassium balance   总被引:2,自引:0,他引:2  
Soybean-maize rotation is a profitable cropping system and is used under rain fed conditions in north China. Since crop yields have been reported to decrease when K fertilizers are not used, we analyzed the productivity trends, soil-exchangeable and non-exchangeable K contents, and K balance in a continuous cropping experiment conducted in an area with an alfisol soil in the Liaohe River plain, China. The trial, established in early 1990 and continued till 2007, included 8 combinations of recycled manure and N, P, and K fertilizers. In the unfertilized plot, the yields of soybean and maize were 1,486 and 4,124 kg ha−1 respectively (mean yield over 18 years). The yields of both soybean and maize increased to 2,195 and 7,476 kg ha−1, respectively, in response to the application of inorganic N, P, and K fertilizers. The maximum yields of soybean (2,424 kg ha−1) and maize (7,790 kg ha−1) were obtained in the plots under treatment with N, P, and K fertilizers and recycled manure. K was one of the yield-limiting macronutrients: regular K application was required to make investments in the application of other mineral nutrients profitable. The decrease in the yields of soybean and maize owing to the absence of K application averaged 400 and 780 kg ha−1, respectively. Soybean seed and maize grain yields significantly increased with the application of recycled manure. For both these crops, the variation coefficients of grain were lower with treatments that included recycled manure than without treatment. After 18 years, the soil-exchangeable and non-exchangeable K concentrations decreased; the concentrations in the case of treatments that did not include K fertilizers were not significantly different. Treatment with N, P, and K fertilizers appreciably improved the fertility level of the soil, increased the concentration of soil-exchangeable K, and decreased the non-exchangeable K concentration. In soils under treatment with N, P, and K fertilizers and recycled manure, the soil-exchangeable and non-exchangeable K levels in the 0–20 cm-deep soil layer increased by 34% and 2%, respectively, over the initial levels. Both soil-exchangeable and non-exchangeable K concentrations were the highest with on treatment with N, P, and K fertilizers and recycled manure, followed by treatment with N, P, and K fertilizers. These concentrations were lowest in unfertilized soils; the other treatments yielded intermediate results. The results showed a total removal of K by the crops, and the amount removed exceeded the amount of K added to the soil; in treatments that did not include K fertilizers, a net negative K balance was observed, from 184 to 575 kg ha−2. The combined use of N, P, and K fertilizers and recycled manure increased the K content of the 0–20 cm-deep soil layer by 125% compared to the increase obtained with the application of N, P, and K fertilizers alone. The results clearly reveal that current mineral fertilizer applications are inadequate; instead, the annual application of recycled manure along with N, P, and K fertilizers could sustain future yields and soil productivity.  相似文献   

14.
Inorganic N fertiliser may be applied to soil in addition to cattle manure by smallholder farmers in developing countries: (a) to complement fertilization; (b) to control a possible immobilisation of N by the manure; and (c) to eliminate the risk of yield depression due to lack of plant available N. The aim of this study was to find out if and how much N was immobilised by cattle manure, if and when remineralisation of N will take place and, if added N has an effect on decomposition of cattle manure in soil. A laboratory study was conducted applying inorganic N fertiliser to soil (NH4NO3 equivalent to 30, 60 and 120 kg N ha-1) together with four cattle manures with different C/N ratios (9–18). CO2–C mineralisation and changes of inorganic N in soil were determined over 60 d. Immobilisation of fertiliser N occurred with manure having the lowest C/N ratio but not with the manures having a higher C/N ratios. Maximum immobilization of fertiliser N (23–36%) occurred within 21 d and thereafter N was mineralised. Carbon dioxide evolution decreased in cattle manure-amended soil at increasing rates of N fertiliser, but decomposition was still higher than from the unamended control. None of the manure treated soils had significantly different contents of inorganic N after 2 months of incubation. It was not possible to use the C/N ratio of aerobically decomposed cattle manure as a tool to predict mineralization or immobilization of N. It was concluded that aerobically decomposed solid cattle manures do not contribute to the N supply of crops in the short term but can immobilize fertiliser N applied at the same time.  相似文献   

15.
Sub-Saharan Africa faces huge food supply challenges due to increasing human population, limited opportunities to increase arable land, and declining yields associated with continuously declining soil fertility. To cater for their food requirements, smallholders use only modest levels of inorganic fertilizers and rely to a large extent on manure, which is generally of low quality. To explore factors influencing fertilizer and manure use at the farm level, 253 farm households in Vihiga district of western Kenya were sampled. A pair of Tobit models was used to relate amounts of manure and fertilizer used to household variables. The results indicate that the use of both manure and fertilizer reciprocally influence each other and are strongly influenced by household factors, and also imply that manure and fertilizer uses are endogenous. Policy changes are required to (1) reduce the burden on farming alone in rural areas; (2) promote the use of higher-cost, higher-value inputs such as fertilizers; (3) improve access to input and output markets; and (4) encourage farmer education so as to promote sustainable soil fertility management. Improved understanding of the biophysical and socioeconomic environment of smallholder systems can help target sustainable soil fertility interventions more appropriately.
Nicholas N. NdiwaEmail:
  相似文献   

16.
The vines and leaves of Momordica charantia L. are used as herbal medicines to treat inflammation-related disorders. However, their safety profile remains uncharacterized, and the constituents in their extracts that exert anti-inflammatory and adverse effects remain unclear. This study isolated the characteristic cucurbitane-type triterpenoid species in the vines and leaves of M. charantia L. and analyzed their cytotoxicity, anti-inflammatory effects, and underlying mechanisms. Four structurally related triterpenoids—momordicines I, II, IV, and (23E) 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD)—were isolated from the triterpenoid-rich fractions of extracts from the vines and leaves of M. charantia. Momordicine I was cytotoxic on normal cells, momordicine II exerted milder cytotoxicity, and momordicine IV and TCD had no obvious adverse effects on cell growth. TCD had anti-inflammatory activity both in vivo and in vitro. In lipopolysaccharide-stimulated RAW 264.7 cells, TCD inhibited the inhibitor kappa B kinase/nuclear factor-κB pathway and enhanced the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate-cysteine ligase modifier subunit through the extracellular signal-regulated kinase1/2 and p38. Thus, the vines and leaves of M. charantia should be used with caution. An extraction protocol that can enrich TCD but remove momordicine I would likely enhance the safety of the extract.  相似文献   

17.
The management of specialised organic crops for vegetable and fruit production require the use of imported fertilizers. A wide range of fertilizers is currently available to organic farmers. These include bulky organic materials with a relatively low nutrient concentration commonly used as base dressing (e.g. composts, solid animal manures) and complementary commercial organic fertilizers with relatively high nutrient concentrations to adjust nutrient supply to crop requirements (e.g. feather meal, hoof and horn meal, vinasse, meat and bone meal, etc.). Nutrient imbalances are a major threat affecting the long term sustainability of horticultural and fruit cultivation systems. Major reasons for these imbalances are the biased element composition of base as well as complementary fertilizers in relation to the nutrient offtakes via harvested products. Gaseous nitrogen losses during manure management and gaseous as well as leaching nitrogen losses after application are major reasons for such nutrient imbalances, as they lead to a relative increase in the concentration of other elements. Conceptual weaknesses in the fertilizer approach in organic farming exist, namely the preferred application of slow release nitrogen fertilizers often rich in phosphorus. This review suggests that the current soil fertility approaches based on application of solid fertilizers and simultaneously a low rate of N inputs via N2 fixation do not foster balanced nutrient levels. The key challenge is to design cropping systems with a higher share of N inputs via biological N2 fixation, and to find fertilizers with a nutrient stoichiometry better suited to match the overall specific offtakes of fertilized crops.  相似文献   

18.
Farm typologies are a useful tool to assist in unpacking and understanding the wide diversity among smallholder farms to improve targeting of crop production intensification strategies. Sustainable crop production intensification will require the development of an array of nutrient management strategies tailored to farm-specific conditions, rather than blanket recommendations across diverse farms. This study reviewed key literature on smallholder farm typologies focusing on three countries (Kenya, Malawi and Zimbabwe), to gain insights on opportunities for crop production intensification, and the importance of developing farm-specific nutrient management practices. Investigations on farm typologies have done well in highlighting the fundamental differences between farm categories, with 3–5 typologies often adequate to represent the wide differences in resource endowment. Resource-endowed farmers have ready access to large quantities of manure and mineral fertilizers, which contribute to higher soil fertility and crop productivity on their farms. Resource-constrained households use little or no manure and mineral fertilizers, and have limited capacity to invest in labour-demanding soil fertility management technologies. These farmers often have to rely on off-farm opportunities for income that are largely limited to selling unskilled labour to their resource-endowed neighbors. The variability in management practices by farmers has resulted in three main soil fertility classes that can be used for targeting soil fertility management technologies, characterized by potential response to fertilizer application as: (1) low-responsive fertile fields that receive large additions of manure and fertilizer; (2) high-responsive infertile fields that receive moderate nutrient applications; (3) poorly responsive degraded soils cultivated for many years with little or no nutrient additions. The main conclusions drawn from the review are: (1) resource constrained farmers constitute the widest band across the three countries, with many of the farmers far below the threshold for sustainable maize production intensification and lacking capacity to invest in improved seed and fertilizer, (2) farm sizes and livestock ownership were key determinants for both farmer wealth status and farm productivity, and (3) soil organic carbon and available P were good indicators for predicting previous land management, that is also invariably linked to farmer resource endowment.  相似文献   

19.
Understanding the effects of long-term use of fertilizers on soil carbon and nitrogen pools and their activities is essential for sustaining soil productivity. Our objectives were to quantify long-term changes in soil organic carbon (SOC), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN) and mineralizable C in maize–wheat cropping sequence in fertilized and unfertilized plots (control, N, NP, NPK, and NPK + FYM). Continuous application of fertilizers increased SOC over its initial content. Active fractions of SOC, i.e., water-soluble carbon, hydrolysable carbohydrates, SMBC, SMBN and dehydrogenase activity, improved significantly with an application of NPK and NPK + FYM. A general increase in carbon mineralization with time period was observed throughout the experiment and was maximum in 100% NPK + FYM treated plots. The estimated annual C input value in NPK + FYM treatment was 1.05 MgC ha−1 year−1. The overall net change in organic carbon was maximum in treatment receiving FYM along with inorganic fertilizers. Therefore, these results suggest that the integrated use of NPK and FYM is an important nutrient management option for sustaining maize–wheat cropping system.  相似文献   

20.
Efficient use of N applied in the form of organic and inorganic fertilizers is important in maize (Zea mays L.) production to maximize producer’s economic returns and maintain soil and water quality. A field study was conducted for three consecutive years (2003–2005) in Thessaloniki, Greece to investigate whether liquid cattle manure can be used to replace inorganic fertilizers and also whether inorganic fertilizer can be applied preplant or as a combination of preplant and sidedress and can affect maize growth, development and N use efficiency. The treatments were control (unfertilized), liquid dairy cattle manure (Manure), application of 260 kg N ha−1 year−1 as basal dressing (N-single), application of 130 kg ha−1 year−1 N as basal dressing before sowing and 130 kg N ha−1 when plants were at the eight-leaf stage (V8) (N-split). In 2 out of the 3 years of the study there was a significant positive effect of fertilizer application on maize growth, development, N uptake, and partitioning compared with the control. Dry matter production was increased by an average of 39% during the 2 years in plots fertilized either with manure or inorganic fertilizers than the control plots. Also from the yield components kernel weight per ear and number of kernels per ear were increased by an average of 35% and 32%, respectively in the fertilized plots compared with the control plots. Chlorophyll level was affected as it was increased by an average of 18%, 14%, and 18% at the ten-leaf stage (V10), silking and milk stage, respectively in the fertilization treatments compared with the control. Similar trend was observed in the other parameters that were studied. No differences were found between the manure and the different times of N application which indicates that manure can be used to replace inorganic fertilizer. Applying N either preplant in a single application or in split application (half of N preplant and half as sidedress) did not have any effect on any characteristics that were studied indicating that preplant application can be used as it is more cost effective. The present study indicates that liquid cattle manure can be used to replace inorganic fertilizers and also that there was no difference between preplant and sidedress application of N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号