首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
对超声波辅助提取远志多糖的工艺进行优化,结果表明,超声波辅助提取远志多糖的优化工艺条件为:超声提取时间30min,超声提取温度67℃,液固比101(mL/g),在该条件下远志多糖的得率为(5.87±0.21)%(n=3);红外光谱显示远志多糖具有典型的多糖特征吸收峰,推测为不含糖醛酸的中性多糖;远志多糖具有一定的清除DPPH自由基(DPPH·)和羟基自由基(·OH)的能力,其对DPPH·清除能力IC_(50)值为0.83mg/mL,对·OH清除能力IC50值为1.29mg/mL。  相似文献   

2.
试验以青钱柳叶为原料,研究青钱柳多糖的超高压提取工艺,对提取的青钱柳粗多糖进行抗氧化活性试验。采用单因素及正交试验对青钱柳多糖的超高压提取工艺进行优化,结果显示,青钱柳多糖最佳提取条件为:料液比1︰25(g/mL)、提取温度30℃、提取压力500 MPa。在此条件下,青钱柳多糖得率最高,为3.70%。将青钱柳粗多糖进行清除DPPH自由基、清除羟基自由基试验,以抗坏血酸(VC)为对照,测定青钱柳叶粗多糖的体外抗氧化能力。结果表明,青钱柳叶粗多糖清除DPPH自由基效果较好且较对照组浓度低,最高清除率为93.0%,而清除羟基自由基效果低于对照。  相似文献   

3.
利用响应面法优化超声波处理辅助提取白灵菇多糖工艺,并研究其体外抗氧化活性。在单因素实验的基础上,根据Box-Behnken实验设计对超声波处理时间、提取温度和液料比进行分析与优化,确定了超声波辅助提取的最佳工艺参数:提取温度56℃、超声波处理时间45 min、提取的液料比为41∶1,在此条件下进行2次提取,得到白灵菇多糖得率为12.26%,相比于传统热水提取法(提取温度77℃、提取时间189.6 min、液料比46∶1、提取次数为2次)多糖得率提高了44.41%。白灵菇多糖体外抗氧化活性实验表明:超声波辅助提取法得到的白灵菇多糖在质量浓度4 mg/m L时,清除羟基自由基的能力和DPPH自由基的能力分别为98.39%和60.8%。   相似文献   

4.
对微波辅助提取的软枣猕猴桃多糖进行分离纯化并对各纯化组分的抗氧化活性进行测定。利用DE-AE-纤维素阴离子交换层析对软枣猕猴桃多糖进行初步分离,得到1个水洗组分和3个盐洗组分;利用Sephade-xG-100、G-200凝聚柱层析对其进行进一步分离纯化。结果表明:4个组分都为均一多糖且都不含有蛋白质;软枣猕猴桃多糖对DPPH自由基和羟基自由基具有一定的清除能力,对超氧阴离子自由基的清除能力很弱,盐洗组分的抗氧化活性明显优于水洗组分;0.1盐洗组分(0.1 mol/L NaCl溶液洗脱的组分)、0.2盐洗组分(0.2 mol/L NaCl溶液洗脱的组分)、0.3盐洗组分(0.3 mol/L NaCl溶液洗脱的组分)、Vc清除DPPH自由基的IC50分别为0.57、1.61、1.18、0.03 mg/mL;清除羟基自由基的IC50分别为1.5、5.6、2.7、0.2 mg/mL;0.1盐洗组分为软枣猕猴桃多糖中主要的抗氧化活性组分。  相似文献   

5.
以提取温度、料液比和提取时间为影响因素,忧遁草多糖提取率为评价指标,采用Box-Behnken响应面法优化提取工艺。结果表明,忧遁草多糖的最佳提取工艺条件为料液比131 (g/mL),提取温度92℃,提取时间1.6h,此时多糖提取率为3.40%。抗氧化活性试验表明,忧遁草多糖具有良好的ABTS自由基和DPPH自由基清除效果,并具有一定的羟基自由基清除能力。  相似文献   

6.
松籽壳多糖超声辅助溶剂法提取及抗氧化性研究   总被引:1,自引:0,他引:1  
用超声波辅助溶剂法提取松籽壳中可溶性多糖,通过单因素和正交试验L9(34)优化提取工艺。并通过清除试验研究松籽壳多糖清除羟基自由基(.OH)和超氧阴离子自由基(O2-.)的效果。结果表明:超声波辅助提取松籽壳多糖的最佳工艺条件为超声时间30min,提取温度60℃,料液比1:50(m:V),超声提取次数1次,该条件下多糖含量为44.26%;松籽壳多糖具有较强的清除(.OH)能力,对(O2-.)的清除作用一般。  相似文献   

7.
水提法提取核桃壳多糖及其抗氧化研究   总被引:1,自引:0,他引:1  
对核桃壳多糖的提取工艺及其抗氧化活性进行了研究。结果表明,提取核桃壳多糖的最优工艺条件:料液比1∶20(g/mL)、提取温度70℃、提取时间3 h、提取次数3次。核桃壳多糖具有较强的还原力,对羟基自由基和DPPH自由基均表现出较好的清除能力,且在一定范围内对二者的清除作用呈现良好的量效关系。  相似文献   

8.
通过响应面试验设计,获得超声提取黑果腺肋花楸叶多糖的最佳工艺条件,通过TCA法将粗多糖中的蛋白成分除去后得到精制多糖;以清除铁还原力、1,1-二苯基-2-三硝基苯肼(DPPH)自由基能力和清除羟自由基能力为指标,评价黑果腺肋花楸叶多糖的抗氧化活性。结果表明,超声提取黑果腺肋花楸叶多糖的最佳工艺条件为:超声温度67℃,超声时间53 min,超声功率150W,料液比1∶30(g∶mL)在此条件下多糖得率为5.01%。黑果腺肋花楸叶多糖具有较好的抗氧化活性,铁还原力、清除DPPH自由基能力和清除羟自由基能力均表现出一定的质量浓度依赖性;黑果腺肋花楸叶多糖多糖铁还原力、清除DPPH自由基和清除羟自由基能力的半数有效质量浓度(EC50)分别为0.623g/L、0.473g/L和0.147g/L。  相似文献   

9.
研究了酶法协同超声波处理对米糠多糖提取的影响,利用响应面法对米糠多糖提取工艺进行了优化,并探讨了米糠多糖的抗氧化活性。结果表明,纤维素酶与中性蛋白酶复配使用(质量比1∶1)以及超声波处理有利于米糠多糖的提取。提取米糠多糖的最佳条件为:复合酶加量3.1 mg/m L,酶解时间2 h,超声功率198 W,超声时间20 min,料液比1∶30,提取时间3.2 h,提取温度60℃;在此条件下米糠多糖得率达到5.3%。米糠多糖具有较强的还原力和一定的抗油脂氧化活性,对DPPH自由基、羟基自由基均表现出较好的清除能力。  相似文献   

10.
为研究山豆根多糖的提取工艺及其抗氧化性,采用热水浸提法提取山豆根粗多糖(SGP),研究提取温度、提取时间、液料比对多糖得率的影响,在单因素实验基础上采用响应面法对山豆根粗多糖的提取工艺进行条件优化。将提取得到的粗多糖分级醇沉,并分别采用清除DPPH、ABTS+自由基及还原能力的方法对各醇沉组分多糖的抗氧化活性进行评估。结果表明,山豆根粗多糖的最佳提取工艺条件为:提取温度83℃,提取时间133 min,液料比30:1 mL/g。在此工艺条件下,山豆根粗多糖得率为3.98%。粗多糖经分级醇沉共获得SGP50、SGP70、SGP80和SGP90 4个组分,且SGP90表现出最强的抗氧化能力,尤其是在清除DPPH自由基方面,显著高于其它组分(P<0.05)。  相似文献   

11.
为提高可口革囊星虫体腔液利用率,探究可口革囊星虫体腔液多糖的最佳提取工艺及其体外抗氧化特性。采用碱浸提法提取可口革囊星虫体腔液多糖,正交试验法优化多糖提取工艺。以总还原力、1, 1-二苯基-2-三硝基苯肼(DPPH)清除率和羟基自由基清除率为指标测定其抗氧化性,并利用高效液相色谱测定单糖组成,红外光谱对多糖成分进行初步分析。结果表明可口革囊星虫体腔液多糖提取最佳工艺条件为提取温度50 ℃、碱提时间3 h、NaOH质量浓度1.5%,在此工艺下多糖得率为0.92%。该多糖的总还原力、DPPH清除率和羟基自由基清除率的半数清除浓度(IC50)分别为2.976、0.567和0.605 mg/mL。高效液相色谱显示该多糖主要由葡萄糖组成。红外光谱结果显示该多糖是一种含有乙酰氨基和吡喃环,以α-糖苷键连接的多糖。由此可知,可口革囊星虫体腔液多糖有较好抗氧化性,具有良好的应用前景。  相似文献   

12.
采用2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)自由基清除法、1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除法、羟基自由基清除法和铁氰化钾法4种方法,分别对3种不同产地(安徽金寨、吉林通化、吉林蛟河)灵芝子实体粗多糖的体外抗氧化活性进行评价。结果表明,3种灵芝子实体粗多糖均具有抗氧化能力。安徽金寨灵芝子实体粗多糖对ABTS自由基、DPPH自由基的清除能力最强,其对应EC50值分别为1.50 mg/m L和2.09 mg/m L,同时也具有最强的总还原力;吉林通化灵芝子实体粗多糖对羟基自由基的清除能力最强,其EC50值是2.13 mg/m L;吉林蛟河灵芝子实体粗多糖的体外抗氧化活性均最低。因此,不同产地灵芝子实体粗多糖的抗氧化活性不同。   相似文献   

13.
以云南和四川黑虎掌菌子实体为原料,热水浸提黑虎掌菌子实体粗多糖,并采用响应面法优化提取工艺。结果表明,云南黑虎掌菌粗多糖(YSP)的最佳提取条件为提取时间3.1 h,提取温度91 ℃,水料比60∶1(mL∶g),多糖得率16.75%;四川黑虎掌菌粗多糖(SSP)的最佳提取条件为提取时间3.1 h,提取温度93 ℃,水料比58:1(mL:g),多糖得率13.93%。以YSP和SSP为实验样品,VC为阳性对照,羟基自由基、DPPH自由基以及超氧阴离子自由基清除率为检测指标,评价YSP与SSP的体外抗氧化活性。结果表明:SSP的羟基、DPPH及超氧阴离子自由基最高清除率分别为86.14%、71.78%和99.98%,均高于对应的YSP清除率76.54%、58.52%和99.93%,且其超氧阴离子自由基清除率均高于VC,但羟基自由基和DPPH自由基清除率均低于VC。 关键词:中图分类号:R284.1 文章编号:0254-5071(2017)03-0150-06 doi:  相似文献   

14.
以茄蒂为原料,研究了酶解超声协同提取茄蒂多糖条件及抗氧化能力。在pH5、50℃水浴温度下用1%纤维素酶酶解30min,采用响应面法优化超声提取茄蒂多糖条件。通过测定对羟自由基、超氧自由基清除能力和总还原力,评价茄蒂多糖抗氧化活性。结果表明,茄蒂多糖最佳提取条件为:料液比1∶36(g/mL),超声时间22min,超声温度68℃。在此条件下多糖得率为5.49%。茄蒂多糖对羟自由基、超氧自由基清除能力和还原力均表现较好的效果,其清除羟自由基、超氧自由基的IC50值分别为0.12、0.22mg/mL。茄蒂多糖抗氧化性略低于VC。   相似文献   

15.
为了寻找杜仲雄花茶多糖的提取工艺,考察多糖的抗氧化活性,采用Design Expert 8.0软件设计实验,并用响应面法优化提取工艺,以DPPH·清除率、·OH清除率和还原力等指标评价杜仲雄花茶多糖的抗氧化活性。结果表明:杜仲雄花茶多糖的提取工艺参数为:提取温度90℃、提取时间4.5h、液料比15∶1。在此工艺条件下,多糖提取得率为3.48%。以合成抗氧化剂BHT为对照,1mg/m L杜仲雄花茶多糖对DPPH·的清除率为52.5%,还原力为72.73%,对·OH的清除率为63.1%。杜仲雄花茶具有一定的抗氧化活性。   相似文献   

16.
为确定拐枣枝多糖的生物活性,对拐枣枝多糖提取工艺进行优化,并评价其体外抗氧化性强弱,从而为拐枣枝多糖的合理开发和应用提供理论依据。以拐枣枝为试验材料,在单因素试验基础上,采用响应面分析法优化拐枣枝多糖提取工艺;通过拐枣枝多糖对羟自由基(·OH)、ABTS自由基(ABTS+·)和DPPH自由基(DPPH·)的清除率的测定从而评价拐枣枝多糖的抗氧化性。结果表明:最佳多糖的最佳提取条件为料液比1∶30(g∶mL)、浸提温度80 ℃、浸提时间2.0 h,拐枣枝多糖的提取率为2.44%。抗氧化性结果表明,拐枣枝多糖对·OH、DPPH·和ABTS+·均有较强的清除作用,最大清除率分别达到76.2%、91.3%和96.8%。  相似文献   

17.
何首乌中多糖的提取及清除羟自由基性能研究   总被引:1,自引:0,他引:1  
吕丽爽  周媛  闫谨 《食品科学》2007,28(7):272-275
本实验探讨了何首乌多糖的提取纯化及其粗多糖对羟自由基的清除能力。考察了影响何首乌多糖的提取的工艺条件,分别对提取料液比,提取温度,提取时间进行了研究。在此基础上利用响应面分析法确定最佳工艺条件为,料液比1:12,温度为84℃,时间为105min,提取次数两次。此条件下多糖得率可达19.14%。而后,测定了经初步纯化的粗多糖清除羟基自由基功能,得到其IC50为0.27mg/ml。  相似文献   

18.
目的:优化北虫草多糖的提取工艺,研究北虫草多糖对血管平滑肌细胞氧化损伤的保护作用。方法:采用L9(34)正交实验法优化多糖提取工艺,利用羟自由基法、DPPH自由基法和FRAP法检测北虫草多糖清除自由基的能力。在细胞水平上构建过氧化氢诱导细胞氧化损伤模型,采用MTT法、ROS细胞染色法评估北虫草多糖对过氧化氢诱导大鼠主动脉平滑肌细胞氧化损伤的保护作用。结果:北虫草多糖的最佳提取条件为:提取温度90 ℃,料液比1:30 g/mL,提取次数3次,提取时间3.0 h,最高得率为7.94%±0.16%。在多糖浓度为1.6 mg/mL时对羟自由基和DPPH自由基的清除能力以及总抗氧化能力分别为75.57%±1.39%、80.23%±2.75%和(0.22±0.01) mmol/mg。细胞实验表明北虫草多糖可显著抑制过氧化氢诱导细胞内ROS生成,提高细胞存活率。结论:成功优化北虫草多糖提取工艺,北虫草多糖具备良好的体外清除自由基的活性,对由氧化应激所导致的心血管疾病中起到很好的防治意义。  相似文献   

19.
以取代度为考察指标,研究了浓硫酸加入量、反应温度和反应时间等因素对平菇多糖硫酸化的影响;在单因素的基础上,通过L9(34)正交试验优化平菇多糖硫酸酯的制备工艺条件;采用FT-IR光谱仪对平菇多糖和平菇多糖硫酸酯进行结构鉴定,并通过测定还原力、DPPH自由基、超氧阴离子自由基和羟自由基清除率探索了平菇多糖硫酸酯的抗氧化活...  相似文献   

20.
甘薯多糖超声辅助提取及其抗氧化活性的研究   总被引:3,自引:0,他引:3  
李利华 《食品工业科技》2012,33(18):257-260
以甘薯为原料,通过单因素实验和正交实验对甘薯多糖的超声波辅助提取工艺进行优化设计;以VC作阳性对照,通过测定对羟自由基(.OH)和超氧自由基(O2-.)的清除作用,评价甘薯多糖的抗氧化活性。结果表明,甘薯多糖超声辅助提取的最佳提取工艺为:浸提温度70℃,浸提时间60min,料液比1:25,超声功率350W,在此工艺条件下甘薯多糖提取率为32.22%。影响多糖提取率大小的先后顺序为:超声浸提温度>超声浸提时间>料液比>超声功率。抗氧化活性结果显示,甘薯多糖对羟自由基(.OH)、超氧自由基(O2-.)均有一定的清除作用,清除能力略低于VC。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号