首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased fixation strength of the bone-pin interface is important for inhibiting pin loosening after external fixation. In a previous study, an apatite (Ap) layer was formed on anodically oxidized titanium (Ti) pins by immersing them in an infusion fluid-based supersaturated calcium phosphate solution at 37 °C for 48 h. In the present study, an Ap layer was also successfully formed using a one-step method at 25 °C for 48 h in an infusion fluid-based supersaturated calcium phosphate solution, which is clinically useful due to the immersion temperature. After percutaneous implantation in a proximal tibial metaphysis for four weeks in rabbits (n = 20), the Ti pin coated with the Ap layer showed significantly increased extraction torque compared with that of an uncoated Ti screw even with partial osteomyelitis present, owing to dense bone formation on the Ap layer in the cortical and medullary cavity regions. When the infection status was changed from “no osteomyelitis” to “partial osteomyelitis,” the extraction torque in the Ap group with “partial osteomyelitis” was almost identical to that for “no osteomyelitis” cases. These results suggest that the Ap layer formed by the room temperature process could effectively improve the fixation strength of the Ti pin for external fixation clinically even with partial osteomyelitis present.  相似文献   

2.
3.
Photopolymer resins are widely used in the production of dental prostheses, but their mechanical properties require improvement. We evaluated the effects of different zirconia filler contents and printing directions on the mechanical properties of photopolymer resin. Three-dimensional (3D) printing was used to fabricate specimens using composite photopolymers with 0 (control), 3, 5, and 10 wt.% zirconia filler. Two printing directions for fabricating rectangular specimens (25 mm × 2 mm × 2 mm) and disk-shaped specimens (φ10 mm × 2 mm) were used, 0° and 90°. Three-point bending tests were performed to determine the flexural strengths and moduli of the specimens. The Vickers hardness test was performed to determine the hardness of the specimens. Tukey’s multiple comparison tests were performed on the average values of the flexural strengths, elastic moduli, and Vickers hardness after one-way ANOVA (α = 0.05). The flexural strengths and elastic moduli at 0° from high to low were in the order of 0, 3, 10, and 5 wt.%, and those at 90° were in the order of 3, 0, 10, and 5 wt.% (p < 0.05). For 5 and 10 wt.%, no significant differences were observed in mechanical properties at 0° and 90° (p < 0.05). The Vickers hardness values at 0° and 90° from low to high were in the order of 0, 3, 5, and 10 wt.% (p < 0.05). Within the limits of this study, the optimal zirconia filler content in the photopolymer resin for 3D printing was 0 wt.% at 0° and 3 wt.% at 90°.  相似文献   

4.
5.
Urate oxidase initiates the uric acid degradation pathways and is extensively used for protein drug development for gout therapy and serum uric acid diagnosis. We first present the biochemical and structural elucidation of a urate oxidase from the extremophile microorganism Deinococcus radiodurans (DrUox). From enzyme characterization, DrUox showed optimal catalytic ability at 30 °C and pH 9.0 with high stability under physiological conditions. Only the Mg2+ ion moderately elevated its activity, which indicates the characteristic of the cofactor-free urate oxidase family. Of note, DrUox is thermostable in mesophilic conditions. It retains almost 100% activity when incubated at 25 °C and 37 °C for 24 h. In this study, we characterized a thermostable urate oxidase, DrUox with high catalytic efficiency and thermal stability, which strengthens its potential for medical applications.  相似文献   

6.
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.  相似文献   

7.
The material for this study consisted of stratified seeds of Vitis californica submitted to germination under optimum conditions (+25 °C) or under chill stress (+10 °C), also followed by recovery. It has been determined that the germinating seeds contain considerable amounts of tannins, catechins as well as phenolic acids such as gallic, p-coumaric, caffeic and ferulic acids. Gallic acid appeared in the highest amount in the germinating seeds (from 42.40–204.00 µg/g of fresh weight (FW)), followed by caffeic acid (from 6.62–20.13 µg/g FW), p-coumaric acid (from 2.59–5.41 µg/g FW), and ferulic acid (from 0.56–0.92 µg/g FW). The phenolic acids occurred mostly in the ester form. Under chill stress, the germinating seeds were determined to contain an elevated total amount of phenolics, as well as raised levels of condensed tannins, catechins, gallic acid, and gafeic acid. The levels of p-coumoric and ferulic acids were found to have decreased. In extracts isolated from a sample exposed to low temperature, increased antioxidant activity and reduction potential were also demonstrated. Tissue of the germinating seeds which underwent post-stress recovery was found to have less total phenolics.  相似文献   

8.
Cubic delta-tantalum nitride (δ-TaN) nanoparticles were selectively prepared using a K2TaF7 + (5 + k) NaN3 + kNH4F reactive mixture (k being the number of moles of NH4F) via a combustion process under a nitrogen pressure of 2.0 MPa. The combustion temperature, when plotted as a function of the number of moles of NH4F used, was in the range of 850°C to 1,170°C. X-ray diffraction patterns revealed the formation of cubic δ-TaN nanoparticles at 850°C to 950°C when NH4F is used in an amount of 2.0 mol (or greater) in the combustion experiment. Phase pure cubic δ-TaN synthesized at k = 4 exhibited a specific surface area of 30.59 m2/g and grain size of 5 to 10 nm, as estimated from the transmission electron microscopy micrograph. The role of NH4F in the formation process of δ-TaN is discussed with regard to a hypothetical reaction mechanism.  相似文献   

9.
A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.  相似文献   

10.
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis aa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.  相似文献   

11.
12.
13.
Highly ordered TiO2 nanotube array (TN) films were prepared by anodization of titanium foil in a mixed electrolyte solution of glycerin and NH4F and then annealed at 200°C, 400°C, 600°C, and 800°C, respectively. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), water contact angle (WCA), and photoluminescence (PL). It was found that low temperature (below 600°C) has no significant influence on surface morphology, but the diameter of the nanotube increases from 40 to 50 nm with increasing temperature. At 800°C, the nanotube arrays are completely destroyed and only dense rutile film is observed. Samples unannealed and annealed at 200°C are amorphous. At 400°C, anatase phase appears. At 600°C, rutile phase appears. At 800°C, anatase phase changes into rutile phase completely. The wettability of the TN films shows that the WCAs for all samples freshly annealed at different temperatures are about 0°. After the annealed samples have been stored in air for 1 month, the WCAs increase to 130°, 133°, 135°, 141°, and 77°, respectively. Upon ultraviolet (UV) irradiation, they exhibit a significant transition from hydrophobicity to hydrophilicity. Especially, samples unannealed and annealed at 400°C show high photoinduced hydrophilicity.  相似文献   

14.
The use of blood for normothermic and subnormothermic kidney preservation hinders the translation of these approaches and promising therapeutics. This study evaluates whether adding hydrogen sulfide donor AP39 to Hemopure, a blood substitute, during subnormothermic perfusion improves kidney outcomes. After 30 min of renal pedicle clamping, porcine kidneys were treated to 4 h of static cold storage (SCS-4 °C) or subnormothermic perfusion at 21 °C with Hemopure (H-21 °C), Hemopure + 200 nM AP39 (H200nM-21 °C) or Hemopure + 1 µM AP39 (H1µM-21 °C). Then, kidneys were reperfused with Hemopure at 37 °C for 4 h with metabolic support. Perfusate composition, tissue oxygenation, urinalysis and histopathology were analyzed. During preservation, the H200nM-21 °C group exhibited significantly higher urine output than the other groups and significantly higher tissue oxygenation than the H1µM-21 °C group at 1 h and 2h. During reperfusion, the H200nM-21 °C group exhibited significantly higher urine output and lower urine protein than the other groups. Additionally, the H200nM-21 °C group exhibited higher perfusate pO2 levels than the other groups and significantly lower apoptotic injury than the H-21 °C and the H1µM-21 °C groups. Thus, subnormothermic perfusion at 21 °C with Hemopure + 200 nM AP39 improves renal outcomes. Additionally, our novel blood-free model of ex vivo kidney preservation and reperfusion could be useful for studying other therapeutics.  相似文献   

15.
16.
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.  相似文献   

17.
A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g−1 exhibited a considerably high OSC of 427 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.  相似文献   

18.
TiO2-based nanofibers were synthesized using a sol–gel method and electrospinning technique. The as-spun composite fibers were heat-treated at different temperatures (500°C, 550°C, 600°C, and 650°C) and atmospheres (ammonia and nitrogen) for 4 h. The fibers had diameters of 50 to 200 nm and mainly featured anatase and rutile phases. The anatase phase decreased and the rutile phase increased with increasing temperature. Different nitrogen conditions exerted minimal effects on the TiO2 crystalline phase. Different nitriding atmospheres during preservation heating yielded various effects on fibers. The effect of nitrogen in ammonia atmosphere is better than that in nitrogen atmosphere. The fibers heat-treated at 600°C and subjected to preservation heating in NH3 showed high photocatalytic activity.  相似文献   

19.
A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca2+ and inhibited by Hg2+ and Ag+. The lipase showed high activity toward triglyceride-Tripalmitin (C16:0) and triglyceride-Trilaurin (C12:0).  相似文献   

20.
The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号