首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new poly(urethane urea) is synthesized via a two-step poly-addition process from polyether, 1,6-hexamethylene diisocyanate, 2,4-diamino-6-phenyl-1,3,5-triazine and different crosslinkers: glycerin or castor oil. The hard to soft segment ratio (OHpolyol/NCO/NH2chain extender) was varied systematically from 1/2/1 to 1/4/3. Poly(tetramethylene glycol) of molecular weight 1,400 was used as the soft segment. The structural behavioral characterization of these polymers was performed through FTIR spectroscopy, thermogravimetric analysis, dynamic mechanical and thermal analysis, stress–strain measurements, and water contact angle measurements. The resulting linear polyurethane urea elastomers exhibit good mechanical properties with breaking strains of 300–890% and tensile strengths of 8–13.5 MPa. Thermogravimetric analysis indicated that the thermal degradation of poly(urethane urea) started at about 280–300 °C, higher than the degradation temperature of conventional polyurethane. The improvement of properties was influenced by the hard segment content and the nature of the crosslinker, but most of all by the structure and amount of the urea introduced through 2,4-diamino-6-phenyl-1,3,5-triazine into the polymer backbone chain.  相似文献   

2.
This paper reports the effect that the aromatic diamines and crosslinker nature have on the physico-mechanical and dielectric properties of linear and crosslinked polyurethane-urea. These elastomers were prepared using poly(tetramethylene glycol) (Terathane 1400), 1,6-hexamethylene diisocyanate and 4,4′-diaminobiphenyl (benzidine) as chain extender and glycerin or castor oil as crosslinkers. The polyurethane-ureas were characterized through Fourier transform infrared spectroscopy, thermogravimetric analysis, differential dynamic mechanical analysis, dielectric properties. The effects of the hard segments structure on physical, dielectric, mechanical and dynamic mechanical properties of the polyurethane-urea elastomers were investigated. The presence of more urea groups in the hard segment leads to high tensile strength (60–70 MPa), high elongation (700%–950%), increased thermally stability and superior dielectric properties.  相似文献   

3.
Castor oil–polyurethane elastomers were prepared by reacting poly (1,4-butane diol) (Terathane 1400) with aliphatic 1,6-hexamethylene diisocyanate. The prepolymers were chain-extended with bifunctional precursor chains and/or with castor oil as a trifunctional crosslinker at stoichiometric ratios. These resulted in a series of crosslinked polyurethane elastomers with different structures of the hard segment. The properties of the material were measured by differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The formation of hydrogen bonds was observed by Fourier transform infrared.spectroscopy The measured properties were found to be strongly influenced by the molar ratio of chain extenders to the diisocyanate component. The glass transition temperatures (T g) for the polyurethanes with OHpolyol/NCO/OHchain extender having molar ratios of 1:2:1 and 1:4:3 were found to be −70 and −57 °C, respectively. The polyurethanes networks with a OH/NCO molar ratio of 1:2:1 had excellent mechanical properties, indicating that this is the optimum ratio to be used in castor oil polyurethane elastomer formulations. The objective of this work was to study the effect of the castor oil crosslinker on the morphology of the resulting crosslinked polyurethanes and to correlate the morphology with the properties of these bio-based crosslinked polyurethanes.  相似文献   

4.
Polyurethane elastomers incorporating a quinoline moiety along their polymeric backbones and aliphatic, aromatic or heterocyclic crosslinkers have been synthesized and characterized. For this, NCO-terminated urethane oligomers were prepared from poly(butylene adipate) diol and methylene diphenyl diisocyanate and were subsequently chain extended with 2,4-quinolinediol and different crosslinkers. This study reports the influence of the different crosslinker chemical structures and the hard segment molar ratio on the thermal and dynamic mechanical thermal properties, as well as on the mechanical properties of these elastomers. The fluorescence spectra of polyurethane elastomers were determined at an excitation wavelength of 290 nm. The different chemical structures of the crosslinkers determine the hard segment cohesion and reduce the mobility of the soft phase, having an important effect on thermal stability and on the mechanical properties of the polyurethane films. Thus the incorporation of aromatic crosslinkers results in polyurethanes with lower elongation and stress at break. The highest mechanical properties were obtained for polyurethanes crosslinked with aliphatic crosslinkers.  相似文献   

5.
TODI类浇注型聚氨酯弹性体的耐热性能研究   总被引:2,自引:0,他引:2  
用3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI)与聚四氢呋喃(PTMG)、聚己内酯多元醇(PCL)合成了一系列浇注型聚氨酯弹性体,考察了不同聚合物多元醇、扩链剂以及硬段含量对弹性体耐热性能和力学性能的影响.结果表明:PCL体系的耐热性能和力学性能优于PTMG体系,其拉伸强度在120℃下保有率>90%;用3,3'...  相似文献   

6.
以中等分子量聚碳酸亚丙酯多元醇作为软段,并与过量的甲苯二异氰酸酯生成预聚物,用1,4–丁二醇进行扩链制备热塑性聚氨酯弹性体,整个反应体系保持—NCO/—OH=1.2。研究了硬段含量变化对材料结构与性能的影响。结果表明,所得弹性体的拉伸性能随着硬段含量的增加而增大,这是微相分离变化的结果;弹性体具有较好的生物降解性,可用于潮湿恶劣环境。  相似文献   

7.
以聚己二酸-1,4-丁二醇酯二醇(PBA)、4,4′-二苯基甲烷二异氰酸酯(MDI)、乙二醇(EG)、1,4-丁二醇(BDO)和1,6-己二醇(HD)等为主要原料,采用预聚体法制备了一系列热塑性聚氨酯弹性体(TPU)。通过对TPU流变性能、结晶性能、硬度与力学性能的研究,考察了不同扩链剂及不同硬段含量对TPU体系内部微相分离的影响。结果表明,HD-TPU与BDO-TPU微相分离情况相当,均大于EGTPU,且HD-TPU具有较好的结晶性能、拉伸强度及断裂伸长率;随TPU体系硬段含量增加,硬度和拉伸强度增加,断裂伸长率减小,相分离发生越早越快,结晶熔融温度越高,但相分离程度并不高。  相似文献   

8.
Oligobutadiene-based prepolymers and polyurethanes (PU) were prepared from hydroxyl terminated polybutadiene (HTPB), three diisocyanates (aromatic, alicyclic and aliphatic) and two chain extenders (containing hydroxyl or amino groups). The free NCO content in the prepolymers varied systematically and the characteristic of these products were interpreted in terms of NCO group reactivity, propagation reactions and HTPB functionality. The mechanical properties of the polyurethane elastomers derived from the prepolymers were discussed in terms of hard and soft segment structures.  相似文献   

9.
以实验室自制聚己二酸乙二醇酯二醇PEA为软段,二苯基甲烷-4,4’二异氰酸酯(MDI)为硬段,分别采用乙二醇(EG、1,4-丁二醇)、BOD和1,6-己二醇、HG为扩链剂,经预聚体法合成了硬段不同的聚氨酯弹性体。研究了硬段结构和硬段含量对弹性体硬度及力学性能的影响。采用旋转流变仪研究了弹性体在降温条件下的非等温结晶过程。结果表明,当硬段含量相同时,BDO-TPU结晶性能最好,拉伸强度最大;HG-TPU断裂伸长率最好。在BDO-TPU体系中,随硬段含量增加,材料硬度和强度增加,伸长率减小;结晶起始温度逐渐增大,结晶性能增强。  相似文献   

10.
The effect of chain extender structure on properties and morphology of α,ω‐bis(6‐hydroxyethoxypropyl) polydimethylsiloxane (PDMS) and poly(hexamethylene oxide) (PHMO) mixed macrodiol‐based aliphatic polyurethane elastomers was investigated using tensile testing, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). All polyurethanes were based on 50 wt % of hard segment derived from 4,4′‐methylenecyclohexyl diisocyanate (H12MDI) and a chain extender mixture. 1,4‐Butanediol was the primary chain extender, while one of 1,3‐bis(4‐hydroxybutyl)tetramethyldisiloxane (BHTD), 1,3‐bis(3‐hydroxypropyl)tetramethyldisiloxane (BPTD), hydroquinonebis(2‐hydroxyethyl)ether (HQHE), 1,3‐bis(3‐hydroxypropyl)tetramethyldisilylethylene (HTDE), or 2,2,3,3,4,4‐hexafluoro‐1,5‐pentanediol (HFPD) each was used as a secondary chain extender. Two series of polyurethanes containing 80 : 20 (Series A) and 60 : 40 (Series B) molar ratios of primary and secondary chain extenders were prepared using one‐step bulk polymerization. All polyurethanes were clear and transparent and had number‐average molecular weights between 56,000 and 122,100. Incorporation of the secondary chain extender resulted in polyurethanes with low flexural modulus and high elongation. Good ultimate tensile strength was achieved in most cases. DSC and DMTA analyses showed that the incorporation of a secondary chain extender disrupted the hard segment order in all cases. The highest disruption was observed with HFPD, while the silicon‐based chain extenders gave less disruption, particularly in Series A. Further, the silicon chain extenders improved the compatibility of the PDMS soft segment phase with the hard segment, whereas with HFPD and HQHE, this was not observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2979–2989, 1999  相似文献   

11.
聚氨酯弹性体的动态力学性能的影响因素   总被引:4,自引:0,他引:4  
综述了聚氨酯弹性体动态力学性能的多种影响因素,讨论了软段类型(聚酯和聚醚)、软段相对分子质量、硬段类型(二异氰酸酯和扩链剂)、硬软段质量分数对PU弹性体动态力学性能的影响。在PU弹性体中,聚酯软段比聚醚软段的Tg高,弹性模量依PPG、PEG、PTMG软段顺序增加。  相似文献   

12.

Abstract  

Molecular dynamics and mesoscale dynamics simulation techniques were used to investigate the effect of hydrogen bonding on the microphase separation, morphology and various physicochemical properties of segmented silicone-urea copolymers. Model silicone-urea copolymers investigated were based on the stoichiometric combinations of α,ω-aminopropyl terminated polydimethylsiloxane (PDMS) oligomers with number average molecular weights ranging from 700 to 15,000 g/mole and bis(4-isocyanatocyclohexyl)methane (HMDI). Urea hard segment contents of the copolymers, which were determined by the PDMS molecular weight, were in 1.7–34% by weight range. Since no chain extenders were used, urea hard segments in all copolymers were of uniform length. Simulation results clearly demonstrated the presence of very good microphase separation in all silicone-urea copolymers, even for the copolymer with 1.7% by weight hard segment content. Experimentally reported enhanced properties of these materials were shown to stem from strong hydrogen bond interactions which leads to the aggregation of urea hard segments and reinforcement of the PDMS.  相似文献   

13.
4‐Aminophenyl disulfide and bis(4‐aminophenyl)methane chain extenders containing hydroxyl‐terminated polybutadiene‐based polyurethane‐ureas are prepared one‐shot to explore the effect of the chain extender structure on the elastomers mechanical properties. However, the results revealed that the participation of the disulfide chain extender in side reactions like thiol‐ene and proton abstraction prevented disulfide metathesis reaction due to decomposing chain extender in the polyurethane‐urea matrix. Also, these side reactions improved the phase mixing via chemical crosslinking between polyurethane‐ureas soft and hard segments, too. Tensile test results showed higher stress strength of the elastomers in the presence of the disulfide chain extender in comparison with the nondisulfide bond containing elastomers. This result was in agreement with the observed result in dynamical mechanical analysis. Dynamic mechanical analysis results established that the absence of the disulfide bond in the polyurethane‐urea matrix led to the higher viscous modulus. The swelling test revealed chemical crosslinking increased in the presence of the disulfide bond. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46309.  相似文献   

14.
Two series of thermoplastic polyurethane elastomers [poly(propylene glycol) (PPG) based PP samples and poly(oxytetramethylene)glycol (PTMG) based PT samples] were synthesized from isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/PPG and IPDI/BD/PTMG. The IPDI/BD based hard segments contents of polyurethane prepared in this study were 40–73 wt %. These polyurethane elastomers had a constant soft segment molecular weight (average Mn, 2000) but a variable hard segment block length (n, 3.5–17.5; average Mn, 1318–5544). Studies were made on the effects of the hard segment content on the dynamic mechanical thermal properties and elastic behaviors of polyurethane elastomers. These properties of PPG based PP and PTMG based PT samples were compared. As the hard segment contents of PP and PT samples increased, dynamic tensile modulus and α-type glass transition temperature (Tg) increased; however, the β-type Tg decreased. The permanent set (%) increased with increasing hard segment content and successive maximum elongation. The permanent set of the PT sample was lower than that of the PP sample at the same hard segment content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1349–1355, 1998  相似文献   

15.
Segmented polyurethanes based on polytetramethylene glycol (PTMG) of 1000 g/mol were synthesized using a two-step polymerization procedure. Various hard segments were obtained using hexamethylene diisocyanate (HDI) or 4,4′-methylenebis(phenyl isocyanate) (MDI) as the diisocyanates and hydroquinone bis(2-hydroxyethyl)ether (HQEE) or triptycene-1,4-hydroquinone bis(2-hydroxyethyl)ether (TD) as the chain extenders. The effect of rigidity and bulkiness of the hard segments on morphology, thermal and mechanical properties were studied. Fourier transform infrared (FTIR) suggested that hydrogen bonding interactions were weakened in the presence of the bulky triptycene-containing hard segments. Variable temperature FTIR demonstrated that hydrogen bonds completely dissociate at around 170 °C for polyurethanes chain extended by HQEE compared to around 110 °C for their TD analogs. Polyurethanes from MDI and TD displayed microphase mixing behavior based on atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). When HDI was used as the diisocyanate in the TD chain extended polyurethane, enhanced microphase separation was observed with comparable mechanical properties to those of the MDI analogs with HQEE.  相似文献   

16.
《Polymer》2014,55(26):6764-6775
High molecular weight semi crystalline thermoplastic poly(ester urethanes), TPEUs, were prepared from a vegetable oil-based diisocyanate, aliphatic diol chain extenders and poly(ethylene adipate) macro diol using one-shot, pre-polymer and multi-stage polyaddition methods. The optimized polymerization reaction achieved ultra-high molecular weight TPEUs (>2 million as determined by GPC) in a short time, indicating a very high HPMDI – diol reactivity. TPEUs with very well controlled hard segment (HS) and soft segment (SS) blocks were prepared and characterized with DSC, TGA, tensile analysis, and WAXD in order to reveal structure–property relationships. A confinement effect that imparts elastomeric properties to otherwise thermoplastic TPEUs was revealed. The confinement extent was found to vary predictably with structure indicating that one can custom engineer tougher polyurethane elastomers by “tuning” soft segment crystallinity with suitable HS block structure. Generally, the HPMDI-based TPEUs exhibited thermal stability and mechanical properties comparable to entirely petroleum-based TPEUs.  相似文献   

17.
聚氨酯弹性体的力学性能影响因素研究   总被引:19,自引:6,他引:13  
研究了合成方法,软段及硬段组成结构,熟化条件等因素对聚氨酯弹性和学性能的影响,结果表明,聚氨酯弹性体的结构与组成,以及由此引起微相分离程度的变化,是影响弹性体性能的重要因素,不同的低聚物二醇,二异氰酸酯及扩链剂合成的弹性体性能不同,采用预聚法,以及适当熟化有助于提高弹性体的性能。  相似文献   

18.
以聚氧化丙烯二醇(PPG-1000)、MDI-50与不同的二醇扩链剂采用二步法合成PPG-1000/MDI体系的聚氨酯(PU)弹性体,并对其阻尼性能进行了测试。结果表明,扩链剂对PPG-1000/MDI体系的聚氨酯弹性体的阻尼性能有明显影响。加入含侧甲基和醚键的扩链剂在不同程度上提高了聚氨酯弹性体的阻尼因子(tanδ),拓宽其阻尼温域。因此选择适宜的扩链剂对调节聚氨酯弹性体的阻尼温域具有一定的意义。  相似文献   

19.
曹琪  刘朋生  魏华 《弹性体》2002,12(5):14-17
用液化改性MDI、聚醚多元醇为原料,ED或BD为扩链剂,合成一系列不同硬段结构的聚氨酯弹性体,并对这些聚合物进行了红外结构、力学性能以及溶解性能的研究,并就其现象进行了理论上的分析。  相似文献   

20.
Summary Hyperbranched shape memory polyurethane (HB-SMPU) were prepared from 4,4’-diphenylmethane diisocyanate, poly (butylenes adipate) glycol, and hyperbranched polyester as chain extender via a two-step process. The morphology of the HB-SMPU films was investigated by the use of wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), DSC and dynamic mechanical analysis (DMA). It was found that the PBAG soft segments in HB-SMPU with 15–35 wt. % of hard segments were in a crystalline state, however, the PBAG segments were in an amorphous state in the HB-SMPU with 40 wt. % hard segments. The increase of the hard segment content resulted in the decrease of the melt transition temperature of the HB-SMPU. The HB-SMPU with 25 wt. % of hard segment content possessed highest loss tangent. Heat of crystallization was dependent on the content of hard segment in the HB-SMPU. 96–98 wt. % shape recovery could be obtained for the HB-SMPU with 15–35 wt. % of hard segment. The content of hard segments in HB-SMPU was very important in determining their physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号