首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于传统阶跃阻抗滤波器,提出了一种易于实现的超宽阻带微带低通滤波器改进设计方案。低阻抗线部分采用扇形微带结构,在同等阶数下,该结构的滤波器与传统阶跃阻抗滤波器相比,具有更紧凑的电路结构以及更好的阻带特性。在滤波器末端并联开路短截线,使得阻带增加额外传输陷波点来抑制寄生通带。利用ADS和HFSS仿真软件对滤波器结构进行优化设计,并进行了实物的加工和测试。实测结果表明,通带3 dB 截止频率为2 GHz,通带内0-1.8 GHz 回波损耗大于20 dB,3-20 GHz 频率范围内的阻带抑制能达到25 dB 以上。  相似文献   

2.
基于T 型谐振器结构,设计了一款新型小型化可重构滤波器。它可以通过开/ 关射频开关,实现三种滤波器的重新配置。这三种模式分别为带阻滤波器(BSF)、宽阻带带阻滤波器(WB鄄BSF)和双模带通滤波器(DB-BPF)。设计并制造了一款小型可重构滤波器实物(εr =2.65,h =1 mm)。其中,带阻滤波器的阻带中心频率为3.89 GHz,-3 dB相对带宽为90.9% (2.12 - 5.65 GHz);宽带带阻滤波器的阻带中心频率为3.54 GHz,-3 dB 相对带宽为137.85%(1.1~5.98 GHz);双模带通滤波器的两个通带中心频率分别为1.53 GHz 和6.89 GHz,-3 dB 相对带宽分别为17. 6%(1.4~1.67 GHz)和1.16% (6.85~6.93 GHz),两通带之间回波损耗优于15 dB。实物测试结果与仿真结果基本一致。  相似文献   

3.
基于T型分支线结构设计了两种新型的小型化差分滤波器,一种是单通带滤波器,另一种是双通带滤波器。其中,单通带滤波器在中心对称线处增加开路支节,构成T型分支结构,可以实现良好的共模抑制。为了验证上述的理论分析,本文设计两个滤波器(ε_r=2.65,h=1mm),单通带滤波器的差模通带中心频率f0为2.5GHz,阻带范围为3.1~9.7GHz,-3dB相对带宽为14.7%(2.2~2.8GHz);双通带滤波器的差模通带中心频率分别为2.2GHz和6.4GHz,-3dB相对带宽分别为18.2%(2~2.4GHz)和9.2%(6.2~6.8GHz)。实测结果与理论预期一致。  相似文献   

4.
应用LTCC技术,设计了一款带通滤波器。采用开口环谐振结构作为基本谐振单元,利用谐振级之间的耦合产生传输零点,实现边带抑制。给出了开口环谐振结构的等效电路分析,滤波器的通带中心频率为23.2 GHz,3-dB带宽为600 MHz,具有很窄的相对带宽,3-dB相对带宽仅为2.6%。对滤波器进行仿真和优化,结果表明,通带22.9~23.5 GHz内插损小于3 dB,低阻带10~21.1 GHz的衰减大于45 dB,高阻带25.3~40 GHz的衰减均大于30 dB。该滤波器的尺寸为4 mm×3.5 mm×0.45 mm,具有非常好的窄带特性和边带抑制特性。  相似文献   

5.
《现代电子技术》2015,(17):80-83
对传统双频段耦合方案进行改进,提出一种新型双通带滤波器结构。该滤波器由两个对称阶跃阻抗谐振器(SIRs)组成,通过调节SIR的电长度,可以得到中心频率可调的通带。为了验证设计与分析的正确性,提出和设计了3个双通带滤波器。Ⅰ型滤波器两个通带的中心频率分别为2.4 GHz和3.5 GHz,相对带宽分别为5.8%和13.7%;Ⅱ型滤波器两个通带的中心频率分别为3.5 GHz和5.2 GHz,相对带宽分别为5.7%和9.2%;Ⅲ型滤波器两个通带的中心频率分别为2.4 GHz和5.2 GHz,相对带宽分别为6.3%和5.4%。Ⅰ型和Ⅱ型滤波器均适用于宽带互通微波互联接入(Wi MAX)和无线局域网(WLAN)应用。Ⅲ型滤波器适用于双频WLAN应用。对所有滤波器进行加工与实测,测试结果与仿真结果吻合较好。  相似文献   

6.
本文设计了一种紧凑型、宽通带、宽阻带的微带带通滤波器。该滤波器的设计是基于带有两个开路调节支节的正方谐振环。基于紧凑性的考虑,改变了传统方环谐振滤波器的馈电点和开路调节支节的位置,以便对谐振环进行折叠处理。这种改变并不影响谐振环的奇偶模特性。在输入和输出端口,通过两个叉指耦合结构对滤波器进行馈电,这种馈电方式增加了滤波器阻带的带宽和抑制度。滤波器的中心频率为4GHz,相对带宽为45%,通带内的回波损耗小于-12dB,群时延小于0.8ns,1-2.9GHz阻带抑制度大于12dB,5.3~7GHz阻带抑制度大于18dB。  相似文献   

7.
提出了一种新型的基于LTCC技术的带通滤波器实现方法。带通滤波器采用两个谐振单元耦合,在输入输出端引入并联反馈电容在通带两边形成一对传输零点,提高了阻带的衰减性能。分别在HFSS和IE3D中构建物理模型,采用εr=2.2的介质材料,尺寸为5 mm×4 mm×2 mm,设计出中心频率f0=1.6 GHz,相对带宽约9%的滤波器,通带内插入损耗小于1 dB,在1.1 GHz和2.1 GHz处形成两个传输零点,两种软件的仿真结果很好地吻合。  相似文献   

8.
黄小晖  吴国安 《半导体技术》2011,36(12):957-961
提出了一种阻带具有多个传输零点的带通滤波器设计方法,基于低温共烧陶瓷(LTCC)技术实现,可满足移动通信用滤波器小型化、高性能的要求。在电路设计中,通过改进滤波器谐振器结构,分别在阻带的低端近端、高端远端引入传输零点以提高带外抑制。借助三维仿真软件,进行指标、结构的仿真优化,设计并制作了一款尺寸为6 mm×3 mm×2 mm的LTCC滤波器,其中心频率f0=2.25 GHz,0.5 dB带宽不小于100 MHz,通带内损耗不大于1.8 dB,在1.33,1.78 GHz和二次谐波处均有传输零点。实测结果表明,该滤波器在阻带低端和二次谐波处有较好的抑制,因此其在移动通信系统中会有广泛应用。  相似文献   

9.
基于开环双模谐振器设计了一种双频带通滤波器,由两个中心重合的正方形开口环谐振器组成。分析该谐振器的奇偶模谐振频率与传输零点,每个通带内有两个谐振模式。该滤波器中心频率分别为4.5 GHz和6.5 GHz,3 dB相对带宽FBW分别为11%、5%,两通带带内插入损耗分别小于0.6 dB、1.4 dB,带内回波损耗分别优于19.5 dB、16.5 dB,高频处阻带抑制达到50 dB,两通带之间隔离度达到53 dB,尺寸仅为6 mm×11 mm×1.09 mm。  相似文献   

10.
提出了一种基于横向型信号干扰的新型多传输零点的宽带带阻滤波器。通过采用终端加载一段四分之一波长开路传输线枝节的弯折型反耦合线与两段对称的半波长传输线开路枝节相并联的方式,在滤波器的阻带内引入了五个传输零点,并在通带内产生了四个反射零点,从而获得了陡峭的过渡带特性、宽阻带特性以及较好的阻带抑制水平。最终设计的宽带带阻滤波器中心频率为3 GHz,20 d B衰减带宽可达106%。  相似文献   

11.
摘 要:为实现结构紧凑和高选择性的宽带滤波器,在传统平行耦合线结构的基础上,作了适当改进,设计了三种结构新颖的三线耦合结构,均能够实现具有三个传输零点的宽带响应,且其中两个零点分别紧靠通带的上下边缘。加工并测试了基于其中一种结构的宽带滤波器,工作频率为2.6GHz,3dB相对带宽为63%,三个传输零点分别位于1.46GHz,3.77GHz和5.13GHz,介质基板采用Rogers 4003,厚度0.813mm。实测结果与仿真结果吻合良好,验证了结构的有效性。  相似文献   

12.
采用修改的多模谐振器(MMR)结构,在输入端与输出端开槽形成交叉耦合,实现了一种结构紧凑、频率选择性较高的超宽带(UWB)带通滤波器。修改的多模谐振器能产生5个模式和2个在高低截止频率附近的传输零点,提高了频率选择性。在滤波器的基础上,通过加载谐振器,形成在8.11 GHz处具有陷波特性的超宽带带通滤波器。利用HFSS13.0验证设计原理。仿真结果表明,该超宽带带通滤波器通带为2.61~11.21 GHz,陷波频率为8.11 GHz,能有效抑制X频段(7.91~8.31 GHz)卫星通信系统对超宽带通信系统的影响,适用于超宽带无线通信系统。  相似文献   

13.
基于微带耦合线零点产生原理,并结合奇偶模分析方法,设计了一种零点可控的1/4波长谐振器滤波器,其工作中心频率为2GHz,零点频率为3.06GHz,带宽为190MHz。微带谐振器的长度为中心频率1/4波长,其中耦合长度为零点频率处1/4波长。研究结果表明该滤波器可以通过调节谐振器的耦合长度实现有限频率的传输零点的控制。与传统的滤波器相比,此滤波器具有结构尺寸小,零点可独立控制的优越性。  相似文献   

14.
提出了一种齿状缺陷地低通传输线结构,该低通传输线由多级齿状缺陷地构成,通过调节齿状缺陷地枝节长度,可以有效调节低通和阻带频率范围。利用该齿状缺陷地结构,级联交叉耦合扇形基片集成波导(SIW)滤波器,该文设计了一款高带外抑制的宽阻带滤波器,与传统SIW带通滤波器相比,其矩形系数K40 dB=2,阻带范围大于2倍的中心频率,具有较好的通带和阻带选择特性。测试结果表明,滤波器的中心频率为10.35 GHz,3 dB和40 dB带宽分别为507 MHz和1.05 GHz,插入损耗优于1.47 dB,与仿真结果基本一致。  相似文献   

15.
文章提出将SIR谐振器结构应用于非对称共面波导传输线中,设计了一种新型SIR结构非对称共面波导带阻滤波器。通过四个SIR谐振单元在非对称共面波导传输线中级联,有效地改善了滤波器的插损和带宽。结果显示,本滤波器中心频率为1.8GHz,最小插损为0.4dB,相对带宽为33.3%,最大带外抑制为-60dB。具有小体积、低插损、高抑制、宽阻带、易于加工等优点。  相似文献   

16.
本文提出了一种紧凑的三频单阶集成基片间隙波导( ISGW)腔体滤波器。 为了限定腔内模式数量,通过分析ISGW 腔模的谐振频率关系,设计了一个腔内只有三个谐振模式的 ISGW 腔体。 为了改善频段之间的带外抑制同时提高频率选择性,提出了新颖的三频单阶滤波响应耦合拓扑,然后在研究该腔体内的腔模位于四个端口处的耦合关系的基础上,设计了不同于传统输入输出端口的位置关系,其输入输出端口各有一个“U”型槽,呈 90°布局作馈电结构。 最后得到了三个通带内只有一个谐振模式的三频单阶腔体滤波器。 对该滤波器进行了建模、仿真和构造,然后利用网络分析仪测量了其端口反射传输系数。 测试结果表明,该滤波器的三个频段的中心频率分别为 f01 = 24. 25 GHz、f02 = 27. 57 GHz 和f03 = 31. 14 GHz;插入损耗(IL)分别为IL1 =1. 58 dB、IL2 = 1. 07 dB和IL3 =2. 51 dB;有限传输零点(FTZ)分别为FTZ1 =20. 55 GHz、FTZ2 = 26. 20 GHz、FTZ3 = 29. 37 GHz 和 FTZ4 = 33. 17 GHz;频段之间的带外抑制优于 13 dB。 测量结果与仿真结果之间存在一定的频移,但相对带宽优于仿真结果。 相比较传统滤波器器件,该款滤波器具有设计频段高、在毫米波频段带外抑制水平高、频率选择性强、整体体积小和质量轻等优势。  相似文献   

17.
张宇  渠芳芳 《微波学报》2022,38(2):56-60
为进一步提高频带间隔离度,获得陡峭的抑制边带同时不增加体积,文中设计了一款新型的S频段波导双工器。在传统膜片式波导滤波器的基础上,低频滤波器提出了一种新型的波导CT型感性交叉耦合结构,高频滤波器引入非谐振腔结构,工作频段为2.025~2.12 GHz&2.2~2.3 GHz。根据其结构的不连续性,采用模式匹配法进行快速分析设计。该双工器在通带的高、低频带外均产生了传输零点,在2.2~2.3 GHz与2.025~2.12 GHz频段内,隔离度分别大于60 dB与90 dB,回波损耗大于20 dB。与同等性能的传统双工器相比,该双工器尺寸小、设计简洁,可在电子工程中广泛应用。  相似文献   

18.
新型的平面双模椭圆函数带通滤波器   总被引:1,自引:1,他引:0  
根据传统的方形贴片双模滤波器,提出了一种新颖的带有两个切角的平面双模带通滤波器结构.该结构使用单个贴片谐振器并且没有耦合缝隙,通带两端各有一个衰减极点,有效减小了滤波器的辐射损耗.对该滤波器结构进行改进,又提出了一种带有两个相互正交、长度不等槽线的双模椭圆函数带通滤波器结构.该滤波器在中心频率1.8GHz处,回波损耗达到31.53 dB,通带内最小插损达到0.01 dB,3 dB相对带宽为19.44%.采用Ansotf公司的En-sem ble 8.0仿真软件进行的仿真研究.仿真结果表明该结构可以更加有效地减小辐射损耗,增加带宽,且体积比传统滤波器减小了约40%,有利于小型化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号