共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
分子印迹电化学传感器检测链霉素 总被引:1,自引:0,他引:1
为实现链霉素的快速、灵敏测定,将特异性强的分子印迹技术与检测灵敏度高的电化学检测方法结合,构建链霉素分子印迹电化学传感器。以链霉素为模板分子,吡咯为功能单体,利用电化学聚合方法制备分子印迹聚合物(MIP)膜。在最优化实验条件下,以铁氰化钾为探针,利用循环伏安法(CV)对链霉素进行定量测定及传感器性能研究。结果表明:传感器线性范围为5.00×10~(-8)~8.00×10~(-5)mol/L,最低检出限(LOD)为3.45×10~(-8)mol/L,为链霉素的测定提供了高效的方法。 相似文献
3.
金霉素(CTC)的滥用给自然环境和人类健康带来了严重的不良影响。建立了一种简便、经济、高效的CTC分子印迹电化学传感器。该传感器的分子印迹膜由邻苯二胺在还原型氧化石墨烯-聚乙烯亚胺复合物(RGO-PEI)修饰的玻碳电极上电聚合而成。采用扫描电子显微镜、红外吸收光谱和紫外可见吸收光谱对RGO-PEI复合材料进行了表征。RGO-PEI复合材料的高比表面积和丰富的氨基基团提高了该传感器检测的灵敏度和稳定性。在优化条件下,该传感器对CTC浓度响应的线性范围为(5.0 × 10-7)~(1.0 × 10-4)mol/L,检测限为 1.67 × 10-7 mol/L (信噪比,S/N=3)。此外,该传感器对卡那霉素、土霉素和盐酸多西环素等干扰物质的响应很小,可用于实际样品中CTC的检测,回收率为102.7% ~ 104.7%,是一种简单、高效的电化学方法。 相似文献
4.
金霉素(CTC)的滥用给自然环境和人类健康带来了严重的不良影响。建立了一种简便、经济、高效的CTC分子印迹电化学传感器。该传感器的分子印迹膜由邻苯二胺在还原型氧化石墨烯-聚乙烯亚胺复合物(RGO-PEI)修饰的玻碳电极上电聚合而成。采用扫描电子显微镜、红外吸收光谱和紫外可见吸收光谱对RGO-PEI复合材料进行了表征。RGO-PEI复合材料的高比表面积和丰富的氨基基团提高了该传感器检测的灵敏度和稳定性。在优化条件下,该传感器对CTC浓度响应的线性范围为(5.0 × 10-7)~(1.0 × 10-4)mol/L,检测限为 1.67 × 10-7 mol/L (信噪比,S/N=3)。此外,该传感器对卡那霉素、土霉素和盐酸多西环素等干扰物质的响应很小,可用于实际样品中CTC的检测,回收率为102.7% ~ 104.7%,是一种简单、高效的电化学方法。 相似文献
5.
以三硝基甲苯(TNT)为模板分子,甲基丙烯酸(MAA)为功能单体,采用乳液聚合法制备TNT的分子印迹聚合物(MIPs)。将制备的MIPs分散在溶剂中,通过表面涂覆法制备出检测TNT的分子印迹电化学传感器。紫外光谱表明TNT与MAA之间存在相互作用力,有助于形成结构稳定、亲和性强的MIPs。利用扫描电镜观测不同制备条件下印迹聚合物的表观形貌,发现溶剂用量为30mL、乳化剂用量为12mg时制备的聚合物形貌较优异。吸附实验表明MIPs对TNT的吸附量随着TNT初始浓度的增加而增加,140min后达到最大吸附量的95%。MIPs对TNT的分离常数远大于RDX和DNT,对RDX和DNT的选择性系数均达到4.4以上,说明MIPs对TNT有较好的选择性吸附能力。铁氰化钾探针实验和对TNT的响应曲线验证了电化学传感器的成功制备,该传感器富集3min就达到了最大电流值的94%,5min内达到吸附平衡。TNT浓度在0.1~5mg/mL的范围内与峰电流有良好的线性关系,检出限为0.06mg/mL。MIPs传感器对TNT的电流响应分别为DNT和RDX的3.13倍、3.27倍,说明其对TNT分子具有很强的特异性识别能力。 相似文献
6.
7.
8.
在玻碳电极(glassy carbon electrode,GCE)表面构建了一种对氨基苯甲酸的芦丁分子印迹电化学传感器实现对芦丁的检测。用对氨基苯甲酸(Para-aminobenzoic acid,P-ABA)作为功能单体,芦丁作为模板分子,采用CV电沉积的方法制备分子印迹聚合物(molecularly imprinted polymers,MIP),然后用洗脱液洗脱之后,对芦丁进行检测。结果表明,电极材料最佳制备条件为沉积圈数10圈;对氨基苯甲酸与芦丁最佳浓度比为10∶1;最佳洗脱时间为30 min。对芦丁的最佳检测条件p H为4.24;最佳富集时间为10 min;峰电流与扫速成正比关系,表明这是一个吸附过程;在0.15μmol/L~0.60μmol/L浓度范围内,响应峰电流和芦丁浓度的线性关系为I=1.726 6C-0.052 6,R2=0.974 8,在2.5μmol/L~15μmol/L的浓度范围内,响应峰电流与芦丁浓度的线性关系为I=0.111 7C+1.3457,R2=0.990 1。在阻抗实验中,得出洗脱后电极的阻抗最小。检测出芦丁片溶液浓度为3.476μmol/L,得... 相似文献
9.
以六方氮化硼(h-BN)修饰玻碳电极(GCE-BN)为基底,苯酚为功能单体,通过电聚合法成功制备了可用于水样中氯氰菊酯(CYP)快速检测的分子印迹聚合膜传感器。借助拉曼光谱仪和扫描探针显微镜表征聚合膜的物相组成和表面结构,采用恒电位诱导法洗脱模板分子,差分脉冲伏安法(DPV)评价传感器的灵敏度。结果表明:传感器响应电流变化值(Δi)与氯氰菊酯的浓度在2. 0×10~(-8)~3. 0×10~(-7)mol/L范围内呈良好的线性关系,检出限低至8. 5×10~(-9)mol/L,水样加标平均回收率在96. 3%~100. 2%之间。传感器制备简单,检测成本低廉,兼具良好的稳定性、选择性,具有良好的应用前景。 相似文献
10.
11.
12.
13.
14.
15.
16.
利用改性SiO_2纳米粒子为载体,丙烯酰胺(AAM)和N-异丙基丙烯酰胺(NIPAM)为功能单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,牛血清白蛋白(BSA)为模板蛋白,制备具有高选择性的蛋白质印迹聚合物。IR和TEM等表征结果表明,印迹层已成功接枝在载体表面。在最佳实验条件下,印迹分子(MIP)和非印迹分子(NIP)的吸附容量分别为67. 445 mg/g和38. 248 mg/g,选择性因子为1. 763。设计3种实验方案考察MIP的选择性,结果表明,MIP对模板蛋白BSA有良好的识别选择性,为蛋白质的识别提供新方法。 相似文献
17.
喹诺酮类(QNs)抗生素残留极大危害生物体和环境,其含量低、种类多、基质复杂,通常需要进行样品前处理结合色谱/质谱分析以实现灵敏检测。分子印迹聚合物(MIPs)是具有与模板分子在形状、大小及官能团完全匹配的特异性识别位点的高分子聚合物,能选择性识别和富集目标分析物并消除干扰。电化学传感器具有高灵敏度、高选择性、响应时间短等优点,将分子印迹技术应用其中,得到的分子印迹电化学传感器(MIEC)具备了二者的优点。综述了MIEC的构建原理,主要包括电流传感器和电位传感器。此外,重点介绍了MIEC在工业生产和实际生活中对QNs的检测,包括恩诺沙星、氧氟沙星等。最后,提出了MIEC在QNs快速检测中面临的挑战和发展前景。 相似文献
18.
《山东化工》2015,(16)
在石墨烯修饰的玻碳电极表面滴涂莱克多巴胺分子印迹聚合物,制备了莱克多巴胺分子印迹电化学传感器。优化了石墨烯浓度、分子印迹聚合物浓度、富集时间、p H值等对传感器的影响,优化后得到的最佳实验条件为:石墨烯浓度为0.3 mg/m L,莱克多巴胺分子印迹聚合物浓度为3.0 mg/m L,富集时间为5 min,磷酸盐缓冲溶液的p H值为7.0;在最佳条件下,石墨烯/分子印迹聚合物的电化学传感器对莱克多巴胺进行检测,其峰电流响应与莱克多巴胺的浓度在0.5~90.0μmol/L范围内具有良好的线性关系,检测限为0.16μmol/L(S/N=3)。石墨烯/分子印迹聚合物的电化学传感器成功应用于猪肉样品中莱克多巴胺含量的测定。 相似文献
19.
20.
试验吡咯为功能单体,草甘膦为模板,在金电极表面通过电聚合制备了一种具有良好草甘膦印迹能力的新型分子印迹电化学电极。以铁氰化钾为活性探针,优化了模板分子与功能单体配比、扫描圈数、检测体系pH值和吸附时间等关键参数,构建了快速检测草甘膦残留的电化学方法。结果表明,该电极对草甘膦具有响应快、灵敏度高和稳定性好的优点,电极的响应电流与草甘膦浓度(5~500 ng/mL的范围)内呈良好的线性关系(r2=0.985),定性检出限为0.5 ng/mL。该电极对草甘膦分子具有较好的选择性和精密性,样品回收率为101%~106%,相对标准偏差为2.89%。同一根电极在初次使用后的第7、14、21、28天测量时,印迹电极的响应值降至初始响应值的90.4%、87.8%、80.4%、75.7%,总体表明印迹电极的稳定性良好。 相似文献