首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在没有氮气保护和引发剂作用下,以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,采用静置热聚合法成功合成了2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)/壳聚糖(CTS)三元共聚高吸水树脂。同时研究了反应条件对树脂吸水倍率的影响,并借助FT-IR对树脂的分子结构进行了分析。实验结果表明,所合成的树脂最佳反应条件为:n(AM)∶n(AMPS)=3∶1,ω(CTS)=2%,ω(NMBA)=0.05%,pH=1.5,固含量为15%。在此条件下合成的高吸水树脂室温下最大吸蒸馏水倍率为1302g/g。  相似文献   

2.
以N,N′-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂,采用水溶液聚合法合成了聚(丙烯酸-co-丙烯酰胺)/腐殖酸钠/高岭土多功能复合高吸水性树脂。研究了腐殖酸钠和高岭土含量对吸水倍率的影响,同时考察了该树脂的吸水速率及溶液pH值和不同阴阳离子对吸水倍率的影响。结果表明,在腐殖酸钠∶高岭土=2∶3(质量比)时树脂具有最高的吸水倍率,其吸蒸馏水和0.9%(质量分数)NaCl溶液分别达到450 g/g和39 g/g。  相似文献   

3.
以N,N′-亚甲基双丙烯酰胺(NMBA)作为交联剂,采用静置热聚合法制备了AMPS/AM/AA/CTS四元共聚吸附树脂。通过单因素法和正交试验法,得到了合成最佳吸附阳离子染料结晶紫的吸附树脂的工艺条件,并运用FT-IR和TG-DTG对树脂的分子结构和热稳定性进行了分析。实验结果表明:该树脂的最佳吸附量的工艺条件是:n(AMPS)∶n(AM)∶n(AA)∶W(CTS)=3∶1∶5∶3%,pH=4.69,w(NMBA)=0.094%,固含量为36.2%;最佳吸水倍率的工艺条件是:n(AMPS)∶n(AM)∶n(AA)∶W(CTS)=3∶0.7∶3.5∶2%,pH=5.61,w(NMBA)=0.119%,固含量为36.59%。所得树脂最大吸附量为83.8mg/g,在此条件下其最大吸水倍率为1035g/g,并且该树脂具有较好的热稳定性。  相似文献   

4.
以过硫酸钾为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,丙烯酸、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,聚乙烯醇为有机合成聚合物,硅藻土为无机黏土,采用水溶液聚合法合成有机/无机复合高吸水树脂。采用傅里叶变换红外光谱仪、扫描电子显微镜和热重分析仪对有机/无机复合高吸水树脂进行了表征,考察了引发剂用量、交联剂用量、AMPS用量及硅藻土用量对复合吸水树脂吸液性能的影响。在最佳反应条件下,有机/无机复合高吸水树脂吸蒸馏水倍率、吸0.9%生理盐水倍率分别为1574g/g和101g/g;纯有机高吸水树脂暴露在空气中的吸湿性是复合高吸水树脂的20~30倍,说明有机/无机复合高吸水树脂具有优异的防潮性能,在不同阳离子盐溶液中(Na~+、Ca~(2+)和Fe~(3+))其吸液性能明显优于纯有机高吸水树脂。  相似文献   

5.
张明  刘跃龙  刘够生 《化工新型材料》2014,(12):123-125,129
以过硫酸钾(KPS)为引发剂,N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,丙烯酸(AA)、丙烯酰胺(AM)和绢云母为原料,采用快速水溶液聚合法,在没有氮气保护的条件下制备有机-无机复合高吸水树脂。采用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)对复合高吸水树脂结构进行了表征。考察了单体配比、绢云母用量、丙烯酸中和度、交联剂用量、引发剂用量对高吸水树脂吸液性能的影响。得到了最佳聚合反应条件:丙烯酰胺与丙烯酸的质量比为1∶5,交联剂用量为0.014%,引发剂用量为0.2%,绢云母用量为5%,丙烯酸中和度为80%,反应温度为65℃。在此条件下制备的复合高吸水树脂的蒸馏水吸收倍率为790g/g,0.9%的NaCl水溶液的吸收倍率为69.8g/g。最后,对聚(丙烯酸-丙烯酰胺)/绢云母复合高吸水树脂的机理进行了探讨。  相似文献   

6.
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,壳聚糖(CTS)、丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,借助微波辐射法合成CTS/AM/AMPS三元共聚吸水树脂,合成最优条件为:pH=4.0,微波反应功率为195W,AM∶AMPS(摩尔配合比)=5∶1,CTS用量3.3%(wt,质量分数,下同),NMBA用量0.06%,在此条件下制得的树脂最高吸水率达1340g/g。同时,采用FT-IR和TG-TGA对树脂结构及热稳定性进行分析。结果表明三元共聚吸水树脂热分解温度在360℃,具有较好的热稳定性。  相似文献   

7.
黄艳芹 《功能材料》2013,44(14):2006-2009
以丙烯酸和丙烯酰胺为单体,N,N-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,采用水溶液聚合法制备了高吸水树脂。通过正交实验法研究了单体浓度、丙烯酸中和度、引发剂用量和交联剂用量对树脂吸水倍率的影响。最终获得了在蒸馏水中吸水倍率高达3114g/g,在质量分数0.9%NaCl溶液中吸水倍率达157g/g的高吸水树脂,该树脂能够用作稠化胶体的稠化剂来提高胶体的实用性能。  相似文献   

8.
反相悬浮法制备聚(丙烯酸-丙烯酰胺)/粉煤灰高吸水树脂   总被引:1,自引:0,他引:1  
以丙烯酸和丙烯酰胺为单体,过硫酸钾为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,Span80为分散剂,环己烷作为油相,采用反相悬浮聚合法合成聚(丙烯酸-丙烯酰胺)高吸水性树脂。探讨了油水比、分散剂用量和交联剂用量对树脂形态和吸液性能的影响。制备的高吸水树脂最佳吸蒸馏水倍率和吸盐水倍率分别为956g/g和137g/g。引入质量分数为9%的粉煤灰后,树脂仍能保持较高的吸水倍率和吸盐水倍率,分别为616.4g/g和66.3g/g。  相似文献   

9.
以淀粉、膨润土、丙烯酸、丙烯酰胺等为原料,采用微波辐射法制备复合高吸水树脂。研究了膨润土用量、丙烯酰胺用量、引发剂用量、交联剂用量等对高吸水树脂吸液率性能的影响。实验结果表明,不同比例下的原材料制得的树脂吸水倍率差异很大。在交联剂为0.045%,引发剂0.32%,中和度70%,膨润土10%,磷酸酯淀粉3%,丙烯酸与丙烯酰胺质量比为2∶1,微波功率为800W辐射15min时吸蒸馏水倍率为796g/g,当丙烯酸与丙烯酰胺质量比为1∶1时,吸0.9%NaCl溶液倍率达95g/g。  相似文献   

10.
以N,N’-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,马铃薯淀粉与丙烯酸及其钠盐接枝共聚合成了交联型淀粉接枝丙烯酸高吸水树脂。研究了交联剂、引发剂和中和对高吸水树脂吸水率的影响。合成的最佳高吸水树脂的吸液能力(g/g)为:去离子水1240,自来水390,人工血95,生理盐水80,人工尿70。同时对高吸水树脂的吸水速率、不同浓度的NaCl溶液下的吸水量和不同的pH下的吸水量进行了测试。高吸水树脂45min内吸水量就达1050 g/g,在pH为3~9之间有较高的吸水量。  相似文献   

11.
选用含量相同的六种不同粘土(煅烧高岭土、蒙脱土、凹凸棒土、膨润土、海泡石和硅藻土),采用反相悬浮法制备了一系列聚(丙烯酸/丙烯酰胺/粘土)高吸水树脂,并比较了不同粘土对高吸水树脂结构、吸水倍率、吸盐水倍率以及保水性能、热稳定性的影响。通过比较发现,添加膨润土的高吸水树脂具有最高的吸水倍率(450 g/g)和吸盐水倍率(92 g/g);添加膨润土和煅烧高岭土均可提高高吸水树脂的保水性能。此外,煅烧高岭土可以更为有效地提高高吸水树脂的热稳定性。  相似文献   

12.
马砺  刘西西  周莎莎  于文聪  刘尚明  黄霄 《材料导报》2021,35(22):22172-22177
以丙烯酸和可溶性淀粉为主要原料,过硫酸铵为引发剂,N-N'-亚甲基双丙烯酰胺为交联剂,丙烯酰胺为单体,采用水溶液聚合法合成高吸水树脂(SAR).通过设计L25(55)正交试验,确定SAR制备条件,并分别添加适量高岭土、蒙脱土、锂皂石制备复合高吸水性树脂.利用FT-lR和SEM-EDS、TG等对复合高吸水性树脂进行表征.考察复合高吸水性树脂的吸液性能与保水性.SAR实验条件为:丙烯酰胺与淀粉质量比5:4、合成温度45℃、引发剂0.13 g、交联剂0.01 g、氢氧化钠9 g.结果表明:此条件下的SAR吸水倍率最大为179.5 g/g,吸盐倍率为70.75 g/g.FT-lR和SEM-EDS结果显示树脂已成功制备.无机物高岭土、蒙脱土、锂皂石的加入提高了SAR的吸液性能及热稳定性,其中含高岭土SAR的吸水倍率和吸盐倍率均达到最大,吸水倍率为245.0 g/g,吸盐倍率为83.3 g/g.  相似文献   

13.
在没有氮气保护的作用下,以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,以过硫酸铵(APS)为引发剂,采用静置热聚合法合成2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)/羧甲基纤维素钠(CMC)三元共聚高吸水树脂。研究了反应条件对树脂吸水率的影响,并借助FT-IR、TG-DTA和偏光对树脂的分子结构、热稳定性和表面形态进行了分析。实验结果表明:所得树脂的最佳反应条件为:n(AM)∶n(AMPS)=1∶1、ω(APS)=0.45%、ω(CMC)=9%、ω(NMBA)=0.085%和pH=1.2,在此条件下合成的高吸水树脂室温下最大吸蒸馏水倍率为909g/g。  相似文献   

14.
PAM/凹凸棒粘土复合高吸水性树脂的吸水性能   总被引:2,自引:0,他引:2  
系统考察了金属离子的价态、种类以及溶液的pH值对聚丙烯酰胺/凹凸棒粘土复合高吸水性树脂吸水倍率的影响。结果表明,复合高吸水性树脂的吸水倍率随着金属离子盐溶液浓度的增大而减小,在不同价态金属离子盐溶液中,树脂的吸水倍率顺序为N a >M g2 >C a2 >F e3 。通过红外光谱探讨了金属离子与复合高吸水性树脂的作用方式;同时还考察了交联剂含量对其吸水倍率、吸水速率和反复吸水性能的影响。  相似文献   

15.
采用溶液聚合法制备防潮型高吸水树脂,以丙烯酸(AA)、丙烯酰胺(AM)为单体,N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)和亚硫酸氢钠为引发剂,乙二醇二缩水甘油醚和1,4-丁二醇为二次交联剂制备吸水树脂。通过红外、热重和光学显微镜等技术对吸水树脂的结构和形貌进行表征,以及对吸水树脂的吸水性能和吸湿性能进行测试。结果表明:二次交联剂的加入可以在吸水树脂表面形成一层高度交联的表面层,且在乙二醇二缩水甘油醚和1,4-丁二醇复配比为1∶1时,吸湿倍率最低,较普通高吸水树脂吸湿率下降75%。  相似文献   

16.
以交联羧甲基纤维素(CCMC)、丙烯酰胺(AM)为原料,过硫酸钾(KPS)为引发剂,N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,通过微波辐射法制备了高吸水性树脂AM-g-CCMC。探讨了NMBA、KPS和CCMC用量对树脂吸水倍率的影响;采用IR,TG-DTA和SEM对树脂进行了表征。结果表明,在最佳制备条件AM∶CCMC∶NMBA∶KPS=50∶5∶0.15∶2.5(wt,质量比),微波功率130W,反应时间200s下制备的树脂对去离子水和浓度为0.154mol/L的NaCl、CaCl_2和FeCl_3溶液的吸水倍率分别为1821、165、82和43g/g。  相似文献   

17.
以羽毛蛋白、丙烯酸和丙烯酰胺为原料,N,N′-亚甲基双丙烯酸胺为交联剂,过硫酸铵和亚硫酸氢钠为引发剂,采用水溶液聚合法制备了羽毛蛋白-聚(丙烯酸-丙烯酰胺)高吸水性树脂。研究了羽毛蛋白用量、引发剂用量、交联剂用量以及温度对树脂吸水倍率的影响,并考察了树脂的综合吸水性能。结果表明,树脂在蒸馏水和0.9%NaCl溶液中的吸水率分别为1152g/g和69.2g/g。树脂拥有较高的吸水速率,粒径80目以上的树脂在3min以内可达到吸水溶胀平衡,并且在较宽的pH值范围(pH=5~10)内的溶液中均有较高的吸水率。  相似文献   

18.
以海泡石黏土(ST)和丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,过硫酸钾(KPS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,采用微波辐射法接枝共聚合成了ST-g-PAMPS耐盐性复合高吸水性树脂,探讨了交联剂、引发剂、ST用量、中和度、微波功率和时间对树脂吸水倍率的影响,用FTIR对树脂官能团进行了表征。实验结果表明:FTIR表明ST和有机单体之间发生了接枝共聚反应,在最佳合成条件下树脂对去离子和生理盐水的吸水倍率分别为1026g/g和110g/g,树脂中引入适量ST能够显著提高复合吸水树脂的吸水能力和耐盐性能。  相似文献   

19.
以聚乙烯醇(PVA)、部分中和的丙烯酸(AA)和羟基磷灰石(HA)为原料,过硫酸铵(APS)为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了聚乙烯醇/聚丙烯酸/羟基磷灰石(PVA/PAA/HA)复合高吸水树脂。考察了PVA用量对吸水性能的影响,研究了树脂在不同pH值溶液和不同阳离子盐溶液中的溶胀行为。结果表明,引入适量的PVA有利于树脂吸水性能的改善;树脂在pH=4~11较宽的范围内都能保持较高的吸水倍率,在CaCl2溶液中的溶胀动力学行为表现出明显的"过溶胀平衡现象"。  相似文献   

20.
以壳聚糖(CTs)﹑马来酸酐(MA)﹑2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,过硫酸铵(APS)为引发剂,N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,采用紫外光固化的方法合成CTs/AMPS/MA三元共聚高吸水树脂。研究了反应条件对树脂吸水性能的影响,结果表明,当固含量为15.87%,nAMPS∶nMA=14∶1,ω(CTs)=2%,ω(NMBA)=2.5%,ω(APS)=0.3%,pH=3,固化时间为5min时可得到具有较好吸水性的高吸水树脂,在蒸馏水中的最大吸水率为555g/g。采用FT-IR和TGA对树脂结构及热稳定性进行表征,并对其吸水速率及动力学进行分析,反吸液能力测定表明制备的树脂具有一定的降解性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号