首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
围岩流变特性是影响巷道工程安全性和稳定性的关键因素之一,本构模型的研究是岩石流变力学理论研究中最基本最重要的组成部分,同时也是将试验研究成果应用于实际工程的必要环节。综合采用试验研究、理论分析和数值试验模拟分析等研究方法,对淮南矿业集团朱集煤矿千米深井巷道粉砂岩的流变力学特性和本构方程的构建进行了分析研究。在参考大量相关理论和试验资料的基础上,提出改进的与应力以及时间有关的指数函数形式的非线性黏塑性元件,将之与Burgers蠕变模型串联形成能够模拟岩石三阶段蠕变特性的六元件组合模型。对朱集煤矿深井巷道粉砂岩进行高围压状态下三轴蠕变试验,获得了不同应力水平下的蠕变曲线,依据测得的轴向蠕变曲线对所提出的六元件蠕变模型进行参数辨识,验证了模型的合理性。  相似文献   

2.
为了解节理软岩的卸荷流变力学特性,采用RLW-2000岩石三轴流变试验系统进行了恒轴压一次卸围压的流变试验,详细分析了相同轴压不同围压以及相同围压不同轴压条件下试样轴向及侧向流变随时间的变化规律。同时分析了试样流变速率随时间的变化规律及试验后试样的破坏形态。通过试验研究掌握了一些节理软岩的卸荷流变规律,为节理岩体的本构模型的进一步研究建立了基础。  相似文献   

3.
通过对亭子口水利枢纽工程坝基下卧的黏土岩、粉砂岩、长石石英砂岩和岩屑砂岩等 4 种主要岩性的岩体变形试验曲线特征进行分析,认为:厚层岩屑砂岩的试验变形量主要来自于岩石晶格错动变形,长石石英砂岩的试验变形量主要为岩石内孔隙和空隙变形以及岩石晶格错动产生的变形,而层理较发育的薄层黏土岩和粉砂岩的试验变形量主要由层间压缩变形、岩石内孔隙和空隙变形以及岩石晶格错动产生的变形共同组成。  相似文献   

4.
通过进行软黏土的常规三轴固结排水试验、K0固结轴向加载排水剪切试验及K0固结侧向卸荷排水剪切试验,模拟基坑侧壁土体的实际应力路径,对比分析3种不同应力路径下土体的变形和强度特性。分析结果表明:① 在3种试验应力路径下,软黏土土样破坏时的主应力差值随着固结围压的增加而增加,均呈近似线性变化;② 侧向卸荷应力路径下,软黏土的变形和强度特性较之常规三轴试验结果均有较大差异;③ 相对于各向等压固结,K0固结条件下土体的凝聚力减小,内摩擦角增大。研究结论为基坑设计时采用反映土体实际应力路径的力学参数提供了理论依据。  相似文献   

5.
结合锦屏水电站引水隧洞的工程实际,采用TLW-2000岩石三轴蠕变试验机对锦屏大理岩试样进行了分级卸围压流变试验。详细分析了恒轴压分级卸围压应力路径下岩石试样的轴向及侧向应变随时间的变化规律,并探讨了卸荷流变过程中岩样的应力应变关系以及流变过程中对岩样不可恢复变形的变化规律。分析认为卸围压不仅影响岩样的瞬时变形而且对流变变形也有很大影响;与卸荷瞬时相比,流变过程中侧向不可恢复变形相对于轴向发展更快;岩样破坏前在侧向的反应要比轴向更为剧烈和明显。通过试验研究掌握了大理岩卸荷流变的基本规律,从而为进一步理论模型的研究提供了可靠的试验数据。  相似文献   

6.
亭子口水利枢纽地处产状平缓的红层地区,库坝区由砂岩、粉砂岩、粘土岩等软硬相间岩体不等厚组成.存在水库区库岸稳定、坝基深层抗滑稳定、左坝肩大园包滑坡稳定、坝肩绕坝渗漏等工程地质问题.围绕这些地质问题,亭子口水利枢纽经过多年的勘察研究,从规划选点、项目建议书、可行性研究至初步设计阶段取得了丰富的勘察成果.  相似文献   

7.
利用英国进口的GDS标准应力路径三轴测试系统对南京地区有代表性的粉质粘土进行了等向固结-侧向排水卸荷试验研究,得出土体侧向卸荷时轴向应力-应变之间关系。根据应力-应变关系曲线性状,在修正剑桥模型的基础上,运用弹塑性理论,推导出土体在保持轴压不变侧向卸荷条件下的轴向应力-应变关系模型,模型的理论计算结果与试验结果吻合较好。更多还原  相似文献   

8.
为了研究干湿气候环境的变化对泥质粉砂岩崩解特性的影响,以新疆肯斯瓦特水利枢纽工程泥质粉砂岩为研究对象,通过室内模拟干湿淋水状态变化,对风化作用下的泥质粉砂岩进行崩解性和力学特性试验研究,结果发现:随着风化程度的加剧,泥质粉砂岩耐崩解性逐步减弱;循环崩解后,各粒径含量都呈现增加趋势,强风化的崩解速度和崩解含量高于风化程度低的岩石;风化作用促使泥质粉砂岩原生结构发生了改变,泥质物含量增加,使其强度和抵抗变形的能力降低。从崩解的微观机制上分析,黏土矿物含量、胶结物类型等对崩解的发生起了主导作用;风化作用促进了黏土矿物含量的增加,加速了崩解,不同风化类型导致崩解特性也出现差异性。  相似文献   

9.
为研究混凝土结构处于复杂应力状态下的静动态力学特性,进行了不同应力比及加载速率下的真三轴压缩试验。对混凝土的强度特性和变形特性展开了深入分析,并基于八面体应力空间建立了考虑应变速率效应的真三轴动态破坏准则。结果表明:真三轴受压下的混凝土极限抗压强度随着应力比的增大而增大。随着应变速率的增加,应力比较低时,混凝土的极限抗压强度逐渐增大;应力比较高时,极限抗压强度先减小后增加。随着应变速率的增加,侧向变形曲线的破坏峰值点更明显;随着应力比的增大,侧应力较大方向上的变形越来越小。基于八面体应力空间建立的真三轴动态破坏准则表达式中包含3个率效应参数,经验证与试验数据吻合较好。  相似文献   

10.
选取三峡工程库区典型砂岩为试验对象,利用岩石三轴流变仪进行水压循环作用下的卸荷力学试验,探究水压循环次数对砂岩卸荷破坏应力、应变的影响规律,分析水压循环下的砂岩卸荷破坏特性。结果表明,根据峰值强度、峰值围压的变化趋势可将水压循环对砂岩的劣化分为初始阶段、加重阶段和饱和阶段;随着水压循环次数的增加,峰值强度沿反"S"形曲线下降,峰值围压值沿正"S"形曲线上升;轴向与环向应变围压柔量值均随水压循环次数增加而增大,但在初始与加重阶段,轴向应变围压柔量增幅明显大于环向。  相似文献   

11.
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock,triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other hand, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.  相似文献   

12.
为解决复杂岩石力学问题,研发了复杂应力路径岩体高压真三轴原位试验技术及流变试验技术、岩体原位大尺度模型试验技术以及岩体破裂扩展精细探测技术等岩体原位试验新技术,并将其应用于白鹤滩柱状节理玄武岩修建高拱坝适宜性、锦屏二级引水隧洞高应力条件下深埋岩体力学特性、乌江构皮滩垂直升船机软岩地基长期变形预测等水工复杂岩体工程关键技术问题的研究。主要研究成果为:①针对高地应力岩体和地下洞室开挖复杂应力路径岩体的变形破坏问题,获得了柱状节理玄武岩、深埋大理岩考虑中间主应力影响的非线性强度准则的强度参数;②针对高应力、复杂应力路径条件下复杂结构岩体的流变特性问题,获得了深埋大理岩流变参数;③针对柱状节理玄武岩松弛特性及预应力锚固防松弛措施,实现了柱状节理玄武岩开挖松弛过程以及岩体真三轴试验破坏过程声发射精细探测;④针对构皮滩超高垂直升船机桩-软岩复合地基长期变形问题,获得了桩-软岩复合地基流变参数。该成果提升了岩体原位试验技术水平,发展了岩石力学基础理论,对解决水工复杂条件下的岩石力学新问题提供了技术支撑。  相似文献   

13.
针对贵州省夹岩水利枢纽工程引水隧洞灰岩开展高围压三轴力学试验,结合声发射测试技术,探讨灰岩在达到峰值应力前的力学特性和裂纹发展规律,并利用自主开发的CASRock数值模拟软件进行了验证.试验结果表明:工程处灰岩在5~ 70 MPa围压作用下形成单一宏观剪切裂缝,无分支裂缝产生,峰后阶段具有明显的脆性特性,同时弹性模量和...  相似文献   

14.
巷道等地下工程围岩的蠕变极大地影响着工程的稳定性,正确认识岩石的流变特性可以使岩土工程的设计、施工和运行更加安全可靠。以朱集煤矿泥岩为研究对象,采用分级加载方式,进行单轴弹黏塑性流变试验,借助Origin软件对流变试验数据进行深入分析,研究该岩样各级荷载作用下的轴向蠕变规律,并分别采用线性的Burgers模型和七元件非线性黏弹塑性流变模型(河海模型)对轴向蠕变曲线进行拟合,确定流变模型的力学参数。将拟合曲线与试验曲线对比分析,结果表明:应力水平较低时,2种模型均能较好地反映蠕变过程;当应力达到长期强度后,七元件非线性黏弹塑性流变模型(河海模型)能较好地反映泥岩岩样流变的3个阶段,而Burgers模型偏差较大。  相似文献   

15.
为探讨室内三轴压缩试验及大型现场压缩模量试验在研究面板堆石坝坝筑坝材料实际力学特性的科学合理性,结合某100 m级混凝土面板堆石坝工程,分别对各区筑坝材料进行上述两种试验研究,其中对现场压缩试验成果采用基于免疫遗传算法的反演方法计算得到材料的邓肯E-B模型参数,同时整理室内压缩试验成果得到另一组参数。基于以上两组参数,运用三维非线性有限元法进行数值计算。计算结果显示,室内三轴试验过程因为缩尺试验料与实际筑坝料之间较大的颗粒粒径差异,计算得到的坝体及面板变形协调性较差,试验成果难以客观反映材料实际的力学性质,建议加强对缩尺效应及颗粒破碎机理的进一步研究以及直接对原级配筑坝材料试验方法的探索。  相似文献   

16.
多轴受力下混凝土强度和变形的试验研究   总被引:2,自引:2,他引:2  
为模拟二滩高拱坝混凝土的复杂受力状况,利用研制的多功能真三轴加压装置,进行了混凝土试件的双轴、三轴受压,一轴受拉另一轴或另二轴受压下的强度和变形的试验研究。根据试验成果建立了双轴、三轴各应力问关系的回归方程及应力与应变关系式。本项研究为校核二滩高拱坝混凝土的安全度、为高拱坝设计中考虑混凝土的力学特性提供了数据。  相似文献   

17.
目前,针对在秦岭腹地南北气候分界线地带特殊区域内建设的碾压混凝土大坝的混凝土配合比如何确定,经验尚少。通过三河口水利枢纽大坝碾压混凝土配合比试验研究,总结了该特殊区域的碾压混凝土配合比设计的经验,可为引汉济渭工程黄金峡碾压混凝土大坝的建设提供依据,也为碾压混凝土筑坝技术在秦岭腹地的推广应用打下良好基础。该试验成果已成功应用于三河口水利枢纽大坝工程中,其水泥、粉煤灰、砂石骨料、外加剂等均满足规范要求,各种强度等级碾压混凝土配合比的胶凝材料总量合适、力学性能满足设计要求、抗渗与抗冻等级较高、耐久性良好。  相似文献   

18.
为研究砂砾石料流变对面板砂砾石坝应力变形的影响规律,在对砂砾石料的流变机理及其分析方法进行分析与选择的基础上,以某高面板砂砾石坝为例,运用三维有限元法,按不考虑砂砾石料流变效应和考虑砂砾石流变效应两种计算方案,分别进行其应力变形的三维有限元计算,然后通过对计算方案所获计算结果的对比分析,系统总结砂砾石料流变对面板砂砾石坝应力变形的影响规律。结果表明:砂砾石料流变使得坝体的应力变形呈现逐渐增大的趋势;流变对于坝体向上游水平位移的影响最大,对坝体向下游水平位移和坝体竖向位移的影响次之,对面板挠度和面板顺坡向应力的影响则相对较小。因此,在实际面板砂砾石坝工程设计中,考虑砂砾石料的流变效应是十分必要的。  相似文献   

19.
对三峡水利枢纽高压闸门定轮支承结构试验中轨道在轮压作用下的受力性能进行了三维有限元数值分析,并与试验结果进行对照,解释了试验过程中出现的以前没有被认识的试验现象。将轨道分为接触区、过渡区、低应力区进行讨论,描述了各区的应力特点,进一步了解了整个轨道的纵向正应力分布规律,并对纵向正应力试验测点的布置问题提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号