首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于泡沫铜/石蜡的锂电池热管理系统性能   总被引:2,自引:2,他引:2  
高效的热管理系统能极大提高电池使用寿命并保证电池安全运行。为提高能源利用效率,针对动力电池组散热问题设计了基于相变材料的被动式热管理系统。采用泡沫铜/石蜡构成复合相变材料以提高石蜡的导热性能,并对复合相变材料导热性能进了测试。通过改变孔隙率、加热功率及环境温度,对不同工况下基于复合相变材料的热管理系统性能进行了实验研究。实验结果表明,泡沫铜孔隙率分别为96%、95%以及93%的复合相变材料的热导率分别是纯石蜡的14.2倍、19.2倍和25.4倍。基于复合相变材料的热管理系统能显著降低热源温度,其冷却性能优于自然对流风冷热管理系统。当热源发热量及环境温度为定值,相同结构复合相变材料下,泡沫铜孔隙率越低,热管理系统性能越好。基于复合相变材料的热管理系统能显著减小由于加热功率和环境温度变化导致的温度波动,提高了热源温度稳定性。  相似文献   

2.
李琪  成泽方  白淼  胡鹏飞 《化工进展》2022,41(9):4928-4936
为了研究纯石蜡与泡沫铜/石蜡相变复合材料吸热熔化性能的不同,探究泡沫铜对石蜡熔化换热过程的影响,本文对纯石蜡和孔隙率为0.98的高孔隙率泡沫铜/石蜡复合材料的相变熔化过程进行了可视化实验研究,并数值模拟分析了纯石蜡及泡沫铜/石蜡复合材料熔化过程。结果表明:复合材料与纯石蜡的液相率变化出现交点,即临界液相率值,此时复合材料具有的液相占比与纯石蜡液相占比相同;泡沫铜的填充能明显改善纯石蜡传热系数低的问题,加快相变材料的整体熔化速率,当热通量为1200W/m2时,孔隙率为0.98的泡沫铜填充使纯石蜡完全熔化时间缩短了约12.5%,并使整体温度分布更均匀,改善热分层现象,且复合材料最大温差比纯石蜡最大温差低约27.5K。  相似文献   

3.
研制了一种基于石墨烯与碳纳米管掺杂的复合相变材料(CPCM),对比分析了高放电倍率下(3C)不同环境温度时基于纯相变材料(PCM)与复合相变材料的锂离子动力电池组的热性能。实验结果表明,当环境温度分别为30℃、35℃和40℃时,由于石墨烯与碳纳米管的协同强化传热,与基于石蜡的电池组相比,电池组的最高温度分别下降了0.6℃、0.8℃和3.8℃。同时也发现,电池组中间位置电池温度高于周边电池,复合相变材料可以降低电池组的温差,尤其在环境温度较高时效果更为明显,如在环境温度为40℃时,填充材料为纯相变材料与复合相变材料时电池组的最大温差为6℃和3.5℃,与采用纯石蜡作冷却介质相比,填充复合相变材料可以使电池组最大温差下降41.7%。  相似文献   

4.
相变蓄热技术是节能减排的一个重要手段,在太阳能利用、余热回收和电力削峰填谷等领域发挥重要的作用。设计了以平板微热管阵列-泡沫铜复合结构为基础,多孔扁管为载热流体通路,水为载热介质,石蜡为相变材料的热管式蓄热装置。通过实验研究了蓄放热过程中装置内部石蜡的温度分布情况,不同载热流体温度和流量下的蓄放热功率变化,以及装置蓄放热效率等特性。实验结果表明,平板微热管阵列-泡沫铜复合结构可以使箱体内石蜡温度分布更加均匀;增加载热流体和相变材料的温差以及增大流量都可以提高蓄放热功率。实验条件下,该装置的最大蓄热功率为1.24 kW,最大放热功率为1.43 kW。装置蓄热效率为92%,放热效率为94%,总效率为87.4%。  相似文献   

5.
相变蓄热技术是节能减排的一个重要手段,在太阳能利用、余热回收和电力削峰填谷等领域发挥重要的作用。设计了以平板微热管阵列-泡沫铜复合结构为基础,多孔扁管为载热流体通路,水为载热介质,石蜡为相变材料的热管式蓄热装置。通过实验研究了蓄放热过程中装置内部石蜡的温度分布情况,不同载热流体温度和流量下的蓄放热功率变化,以及装置蓄放热效率等特性。实验结果表明,平板微热管阵列-泡沫铜复合结构可以使箱体内石蜡温度分布更加均匀;增加载热流体和相变材料的温差以及增大流量都可以提高蓄放热功率。实验条件下,该装置的最大蓄热功率为1.24 kW,最大放热功率为1.43 kW。装置蓄热效率为92%,放热效率为94%,总效率为87.4%。  相似文献   

6.
动力电池的最佳工作温度范围为20~50℃,因此热管理系统是其运行过程中不可分割的一部分。相变储热材料在发生相变时可以吸收或释放大量的热量并且温度基本保持不变,在电池热管理中得到广泛应用。本文综述了国内外基于相变储热技术的电池热管理系统的研究进展,主要介绍了基于相变材料的被动式热管理系统、主动式热管理系统以及主动式和被动相结合的耦合式热管理系统。综合来看,复合相变材料形状稳定性好、热导率高,可以有效地降低电池组的温度,提高电池组的温度均匀性。导电复合相变材料的电热转换特性还可用于低温下快速加热电池,实现加热-冷却一体化。然而在相变材料被动式热管理系统中,相变材料吸收的热量无法及时释放出去,热量的堆积会造成系统失效。将主动散热技术与相变材料耦合得到的耦合式热管理系统具有更好的控温性能、稳定性和安全性。此外,相变乳液以及相变微胶囊浆液具有比热容大、可相变等优点,替代水作为电池热管理系统的冷却介质可以获得更好的温度均匀性和更低的功耗。但相变乳液本身的稳定性差、过冷度大等问题亟需解决。总之,电池在高温和低温下都需要进行有效地温控,相变材料如何解决电池全温度段的热管理还值得进一步研究。  相似文献   

7.
温度对电动汽车锂离子电池有很重要的影响,电池温度过高时会降低电池的放电效率,加速电池寿命的衰减;冬季环境温度过低会降低电池的充电效率,缩短电动汽车的续航里程。为了使电池温度维持在合适的范围内,设计了动力电池复合相变材料热管理系统。将复合相变材料包裹在电池的外面,研究了相变材料对电池组温度场的影响。研究表明,相变潜热是最重要的物性参数,直接决定着电池组的最高温度。相变材料的热导率越大电池组的温度分布会越均匀。复合相变材料中石墨含量为25%时与纯石蜡相比可将电池组的最高温度降低2℃。在冬季,电池组有相变材料保温时,电池组的平均温度较无相变材料时高8℃。  相似文献   

8.
王建  郭航  叶芳  马重芳 《化工学报》2018,69(4):1611-1619
温度对电动汽车锂离子电池有很重要的影响,电池温度过高时会降低电池的放电效率,加速电池寿命的衰减;冬季环境温度过低会降低电池的充电效率,缩短电动汽车的续航里程。为了使电池温度维持在合适的范围内,设计了动力电池复合相变材料热管理系统。将复合相变材料包裹在电池的外面,研究了相变材料对电池组温度场的影响。研究表明,相变潜热是最重要的物性参数,直接决定着电池组的最高温度。相变材料的热导率越大电池组的温度分布会越均匀。复合相变材料中石墨含量为25%时与纯石蜡相比可将电池组的最高温度降低2℃。在冬季,电池组有相变材料保温时,电池组的平均温度较无相变材料时高8℃。  相似文献   

9.
朱孟帅  王子龙  孙向昕  周翔 《化工进展》2022,41(6):3203-3211
基于石蜡和高孔密度的泡沫铜制备了复合相变蓄热材料,设计并搭建了一套可视化蓄热实验装置,分析了高孔密度下泡沫铜填充率对石蜡相变过程的强化传热机理,得到了复合相变蓄热材料的综合传热系数。实验结果表明,当泡沫铜填充率为0、0.43%、1.29%和2.15%时,复合相变材料的综合传热系数先减小后增大,分别为1.26W/(m·K)、1.18W/(m·K)、1.44W/(m·K)和1.88W/(m·K),因此随着泡沫铜填充率的增加,复合相变材料的融化时间先增长后缩短。此外,随着泡沫铜填充率从0.43%增至2.15%,复合相变材料融化时传热机制中导热占比从17.26%上升到86.01%,自然对流占比从82.74%下降到13.99%。  相似文献   

10.
史巍  程素香 《硅酸盐通报》2017,36(12):4112-4116
通过将复合相变材料应用于温室大棚中,达到控制温室温度波动幅度的目的.即利用相变材料在使用环境温度高于相变温度时可吸收热量,低于相变温度时可释放热量的能力,起到调节周围环境温度的作用.对比了石蜡以及加入不同比例石墨粉的石蜡石墨粉复合相变材料的导热性能;研究了加入复合相变材料的温室模型和对比模型的温控性能.结果表明:加入石墨粉,提高了石蜡的导热性能;加入相变复合材料的温室模型室内温度波幅小,控温效果优于对比温室;墙体储(放)热能力优于对比温室.  相似文献   

11.
采用混合搅拌方法制备膨胀石墨(EG)/石蜡复合相变材料,测试分析了EG含量、施加电压与EG/石蜡复合相变材料体积电阻率的关系,研究了直接自发热和正温度系数(PTC)电阻发热时复合相变蓄热单元的发热特性。结果表明,随着EG含量或施加电压的增大,复合相变材料体积电阻率逐渐减小;施加电压对样品体积电阻率的影响与复合相变材料中EG含量有关,EG含量越高,施加电压对复合相变材料体积电阻率的影响越明显。当施加电压为4.0V时,EG质量分数分别为4%、5%、8%的复合相变材料体积电阻率分别只有0.5V时的0.481倍、0.185倍、0.068倍。基于复合相变材料导电特性,直接负载电压可实现复合相变材料电热转化和相变蓄热;结合PTC电阻发热可灵活控制复合相变蓄热单元加热功率,实现其快速充热。  相似文献   

12.
吴斌  邢玉明  徐伟强 《化工学报》2010,61(10):2540-2545
将相变材料(PCM)应用于移动电子设备热控制单元(TCU)是一种极为理想的被动式热设计方案,但因PCM导热率低,TCU热性能较差,需强化PCM的导热以提高TCU的热性能。对填充泡沫复合相变材料(FCPCM)的TCU建立了二维数学模型,并对TCU的热性能进行了计算分析。其中,FCPCM的传热模型考虑了空穴的影响;PCM相变过程采用等效热容法求解。对填充FCPCM的TCU设计和加肋设计进行了比较分析,此外,还分析了泡沫孔隙率、热源功率以及泡沫骨架材料对TCU热性能的影响。结果表明,填充铝制FCPCM极大提高了TCU的热性能,可以很好地满足电子元件热控制设计要求。  相似文献   

13.
纳米复合相变蓄热材料的制备与特性   总被引:1,自引:1,他引:0       下载免费PDF全文
康亚盟  刁彦华  赵耀华  汪顺 《化工学报》2016,67(Z1):372-378
相变蓄热材料(phase change materials,PCMs)是相变蓄热技术研究的基础。针对普通相变蓄热材料热导率低的缺点,采用纳米技术改善石蜡的相变传热性能,从而提高其热导率及热扩散系数。通过纳米颗粒-石蜡复合材料熔化过程测试和纳米颗粒沉降过程观察,确定铜纳米颗粒和Hitenol BC-10分别作为实验用纳米颗粒和分散剂,在制备稳定的纳米铜颗粒-石蜡复合相变材料的基础上,对其热物性进行了实验研究。结果表明纳米铜颗粒的添加使得石蜡热导率增幅最大,实验测得固态纳米铜-石蜡热导率提高7.9%,液态提高3.8%,而固、液态热扩散系数则分别提高了20.6%和16%。  相似文献   

14.
泡沫金属强化石蜡相变蓄热过程可视化实验   总被引:5,自引:2,他引:5       下载免费PDF全文
相变材料的低热导率是限制潜热蓄热广泛应用的重要原因。将相变材料石蜡真空条件下注入到泡沫金属铜内制备泡沫金属铜-石蜡复合相变材料,通过铜的高热导率及高孔隙材料的大面体比来强化相变换热过程。采用DSC示差扫描量热法对石蜡进行热物性测量获得准确的石蜡相变温度及相变潜热。以管壳式相变蓄热结构为对象,提取对称结构进行可视化设计,对比纯石蜡及泡沫金属铜-石蜡复合材料在相同运行条件下的相变过程,追踪二者熔化过程的相界面位置随时间的演化过程并布置热电偶准确测量材料内部的温度分布。结果显示加入泡沫金属后的复合材料的内部温差明显减小,温度分布均匀,蓄热热通量显著增大,有效缩短相变时间并缓解了自然对流造成的顶部过热和底部不熔化现象。  相似文献   

15.
相变蓄热材料(phase change materials,PCMs)是相变蓄热技术研究的基础。针对普通相变蓄热材料热导率低的缺点,采用纳米技术改善石蜡的相变传热性能,从而提高其热导率及热扩散系数。通过纳米颗粒-石蜡复合材料熔化过程测试和纳米颗粒沉降过程观察,确定铜纳米颗粒和Hitenol BC-10分别作为实验用纳米颗粒和分散剂,在制备稳定的纳米铜颗粒-石蜡复合相变材料的基础上,对其热物性进行了实验研究。结果表明纳米铜颗粒的添加使得石蜡热导率增幅最大,实验测得固态纳米铜-石蜡热导率提高7.9%,液态提高3.8%,而固、液态热扩散系数则分别提高了20.6%和16%。  相似文献   

16.
童晓梅  陈龙刚  张涛 《现代化工》2013,33(5):47-49,51
以石蜡为相变材料,高密度聚乙烯(HDPE)为支撑材料,木粉(WF)为载体材料,石墨为填料,采用加热共熔法制备石蜡/HDPE/WF/石墨复合相变储能材料。利用扫描电子显微镜(SEM)、热重分析仪(TGA)、差示扫描量热仪(DSC)、步冷试验和渗漏实验等对复合相变材料进行性能测试。结果表明,石蜡质量分数为50%,WF质量分数为10%,石墨质量分数为4%时,该复合相变材料结构稳定,密封性能优异,热稳定性好,相变温度为60.1℃,相变潜热为93.71 J/g,渗漏率低,应用前景广阔。  相似文献   

17.
作为储热和热管理技术的重要材料之一,相变储能材料通常具有储热密度较大、相变温度变化较小的优势,但其热导率较低,热传递效率较差。本文将泡沫铜用于石蜡相变储能材料的传热强化,通过测定相变储能材料储放热过程的温度变化,考察了添加泡沫铜对相变储能材料储放热速率和温度均匀性的影响,且在实验基础上对储能材料的放热过程进行建模并求解,得到温度云图,为实际应用提供理论依据。结果表明,添加泡沫铜后,石蜡的相变储热和放热时间分别缩短了16.67%和14.71%;储放热过程复合材料中心层与外层中心点的最大温差分别降低了91.5%和87.5%;建立放热过程相变储能材料温度随时间变化的模型,对比实际值和模型预测值,得到相关系数及标准误差分别为0.99℃和0.13℃,证明该模型准确度较高,可有效预测相变储能材料的温度变化情况。  相似文献   

18.
杨喆  刘飞  张涛  邓兴  张正文 《化工进展》2022,41(9):4918-4927
传统相变材料受限于自身热导率小,其相变蓄热效率难以提升,通过在相变材料中添加具有高热导率的金属多孔结构是强化传热的重要手段之一。本文建立了三周期极小曲面(triply periodic minimal surface,TPMS)多孔铝-石蜡复合相变材料的三维、瞬态包含自然对流的相变蓄热模型,利用数值仿真结合实验的方法研究了TPMS多孔铝-石蜡复合相变材料在蓄热过程中的固液相界面演变规律、实时温度变化、热传输特性以及蓄热性能。结果表明,在纯石蜡中添加primitive杆状(primitive sheet,PS)、primitive壳状(primitive network,PN)两种TPMS多孔铝结构后,石蜡相变温度范围内出现明显的相变温度平台,PS-石蜡、PN-石蜡复合相变材料的相变起始时间较纯石蜡分别减少了74.1%与91.4%,竖直方向上的最大温度梯度由纯石蜡的1605.7℃/m分别下降至PS-石蜡、PN-石蜡复合相变材料的840℃/m、943.8℃/m,蓄热速率较纯石蜡分别提高3.10倍、4.69倍。最后,通过选区激光熔化(selective laser melting,SLM)技...  相似文献   

19.
实验研究了空心铝合金结构承载件内部填充相变材料的非稳态换热特征,通过测试试件加热面与背热面的温度响应分析了孔隙率、孔径等因素对换热过程的影响规律。研究结果表明:填充石蜡试件的换热过程可划分为熔化前显热区间、熔化区间、熔化后显热区间3个阶段;熔化区间的潜热吸收使得试件填充石蜡时的温控时间可达到不填充石蜡时的2.5倍;试件孔隙率越大或孔径越大,则其加热面与背热面的温差越大,熔化时间越长。  相似文献   

20.
实验研究了空心铝合金结构承载件内部填充相变材料的非稳态换热特征,通过测试试件加热面与背热面的温度响应分析了孔隙率、孔径等因素对换热过程的影响规律。研究结果表明:填充石蜡试件的换热过程可划分为熔化前显热区间、熔化区间、熔化后显热区间3个阶段;熔化区间的潜热吸收使得试件填充石蜡时的温控时间可达到不填充石蜡时的2.5倍;试件孔隙率越大或孔径越大,则其加热面与背热面的温差越大,熔化时间越长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号