首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冯晨辰  吴爱民  黄昊 《材料导报》2016,30(1):143-149
多孔碳材料作为双电层电容器的主要电极材料,已成功应用于商业化超级电容器。但作为电极材料,纯碳材料表面疏水、内阻较大、电容较低等缺点使其进一步发展受到制约。近年来,随着超级电容器的迅速发展,氮掺杂多孔碳材料作为其电极材料引起研究人员的广泛关注,并采用不同的制备方法成功合成了一系列结构不同、性能优异的氮掺杂碳材料。基于超级电容器氮掺杂多孔碳电极材料的最新研究进展,首先介绍了氮在碳材料中的基本存在形式及对碳电极材料性能的影响,然后重点评述了氮掺杂碳电极材料的制备,最后总结了超级电容器氮掺杂碳材料的发展趋势。  相似文献   

2.
硬碳、活性炭、碳纳米管(CNTs)、石墨烯、多孔炭和炭纤维等炭材料替代锂离子电池的石墨阳极是目前的研究热点。与石墨相比,这种材料已表现出更好的储锂电化学性能,但仍有待进一步发展空间。其中一种有效的方法是在炭材料结构中加入杂原子(例如氮),提高其作为锂离子负极时的电化学性能。本综述首先描述了氮掺杂如何对锂离子电池的性能产生积极影响,并举例说明了氮掺杂炭材料的优势。然后,比较了不同N掺杂炭材料中的X射线光电子能谱和扫描隧道显微镜的表征结果,通过统计分析了掺氮量对掺氮碳材料比容量的影响。  相似文献   

3.
采用溶胶-凝胶法和胶体晶体模板法制备了有序多孔TiO2微球,在微波辐照条件下对其掺氮改性,利用FTIR、SEM、XRD、XPS分析等方法对掺氮TiO2材料进行表征,并研究掺氮前后TiO2材料的光催化性能。实验结果显示,所制备有序多孔TiO2微球整体较致密,但局部有孔洞塌陷。微波辐照前后有序多孔TiO2微球的晶型没有改变,依然为锐钛型。XPS分析发现微波辐照制备掺氮有序多孔TiO2微球是可行的,且有序多孔TiO2微球中氮元素质量分数约为1.24%。掺氮有序多孔TiO2微球的光催化性能好于未掺氮TiO2的光催化性能。  相似文献   

4.
采用水热组装法制备了碳纳米管/氮掺杂多孔碳复合电极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、N2吸附-脱附(BET)和X射线光电子能谱(XPS)表征了复合材料的微观形貌和结构;并采用循环伏安法、恒流充放电和交流阻抗谱测试了复合材料的储能特性。结果表明,水热组装法成功地合成了具有高比表面积(1 039m~2/g)的碳纳米管/氮掺杂多孔碳复合材料。并且该复合材料表现出优异的储能特性,在1A/g下,其比电容高达261F/g,远远高于氮掺杂多孔碳(214F/g)和碳纳米管(109F/g)的比电容;在功率密度为10 500 W/kg下其能量密度仍为53.75 Wh/kg。  相似文献   

5.
掺氮多孔炭材料在电化学能量储存和转化方面具有良好的应用前景.可控的氮原子掺杂与孔结构设计对提高其性能起着重要作用.本工作利用无溶剂纳米铸造法,以甘氨酸(Gly)为单一前驱体、以SBA-15为硬模板,制备了掺氮有序介孔炭材料(N-OMCs).甘氨酸在SBA-15孔道内的限域热解对提高碳产率、氮掺杂量以及构筑双介孔结构非常...  相似文献   

6.
以葡萄糖为碳源、乙酰胺为氮源、氢氧化钾(KOH)为活化剂,通过水热碳化及烧结处理,制备了氮掺杂多孔碳材料,将其与硫进行复合得到多孔碳/硫复合正极材料,考察了不同质量活化剂对多孔碳材料比表面积、孔容孔径及多孔碳/硫复合正极材料电化学性能的影响。结果表明:多孔碳前驱体与活化剂质量比为1∶4时制备的多孔碳材料具有最大的比表面积和孔隙率,且该材料与硫复合得到的多孔碳/硫复合正极材料具有最优的电化学性能、较高的放电比容量和良好的循环性能。  相似文献   

7.
微波掺氮有序多孔TiO2材料的制备与性能   总被引:1,自引:0,他引:1  
采用晶胶模板法制备了有序多孔TiO<,2>材料,在微波辐照条件下对其掺氮改性,利用扫描电镜(SEM)、X射线衍射(XRD)、光电子能谱(XPS)方法对掺氮TiO<,2>材料进行表征,并研究掺氮前后TiO<,2>材料光催化性能.实验结果显示,通过晶胶模板法所制备的有序多孔TiO<,2>材料的整体比较致密,但局部有孔洞的塌...  相似文献   

8.
选取聚丙烯腈和三聚氰胺为碳前驱体和氮前驱体,通过电纺丝和后续的炭化和水蒸气活化过程,制备了一种具有自支撑结构,无需任何导电剂和粘结剂,直接用作电极的用于锂离子电池负极的掺氮多孔炭纳米纤维布。结果表明,此多孔炭纳米纤维布具有无纺交联的纳米纤维形态、独特的微孔结构、较高的比容量(856 m Ah·g-1)和较好的功率性能,是一种非常有使用前景的锂离子电池负极材料。  相似文献   

9.
以类沸石咪唑酯骨架结构材料Co(bIm)2(ZIF-9)为前躯体,在氮气氛围中进行700℃热解,得到了掺杂氮的多孔碳材料Co/C-700。利用原位掺杂,同时高温碳化ZIF-9和硫粉,在同样条件下合成氮-硫双掺杂的多孔碳材料CoS/C-700。对合成材料Co/C-700和CoS/C-700进行了表征,显示了样品的成功合成。同时研究了Co/C-700和CoS/C-700作为修饰碳糊电极材料在碱性电解液中的电化学性质,Co/C-700和CoS/C-700具备良好的电化学可逆性,可作为电极材料。  相似文献   

10.
以原位聚合法制备的煤基聚苯胺为C、N源,羰基铁粉为催化剂,高温催化裂解制得掺N量为0.256%(wt,质量分数,下同)的多孔碳/Fe,再通过液相氧化法或高温水汽法处理,均成功制备出掺N多孔碳/Fe_3O_4。扫描电镜、红外光谱、X射线衍射和电容性能测试表明,在煤/苯胺质量比为1∶1、煤基聚苯胺/羰基铁粉质量比为1∶1、热解温度为1000℃、热解时间为3h,并经液相化学氧化法处理制得的掺N多孔碳/Fe_3O_4复合材料的电容特性较好,在1A/g的电流密度下,单极比电容达到392.45F/g,比能量达到65.95Wh/kg,比功率达到546.96W/kg。掺入的N主要以叔芳胺的形式存在于多孔碳中,多孔碳与Fe_3O_4之间有较强的界面作用。液相化学氧化法制备的Fe_3O_4大多在多孔碳外或多孔碳的孔隙中沉积,分散性更好,表现出比高温水汽法更好的储能作用。  相似文献   

11.
由于制备方法简单并且原料易得, 多孔碳合成广泛采用生物质材料, 并用于能源存储。以天然生物质棉花作为碳源, 通过简单的一步法制备得到氮掺杂多孔碳材料。这种多孔碳材料在碳化温度为750℃时具有480 m2/g的比表面积和6.84%的高含氮量。当用作超级电容器电极材料时, 这种碳材料显示出了良好的电容性能。在1 mol/L硫酸电解液中, 电流密度为1 mol/L时, 比电容可以达到252 F/g, 并且在循环10000圈之后仍能保留94%的原电容。这种低成本的棉花基碳材料为超级电容器应用提供了可能。  相似文献   

12.
正纳米多孔结构的碳材料由于具有大比表面积、独特的孔结构以及丰富的纳米孔,使其在储能领域应用潜力巨大,也引起了人们的高度重视。然而,对于多孔材料在纳米尺度上,面向不同储能需求的多功能组合和调控仍是目前材料领域的一个难点问题。在国家自然科学基金项目(批准号:51274240)的资助下,中南大学周向阳课题组与香港理工大学L imin Zhou课题组合作,在一维与二维纳米多孔碳材料的制备、表征及形貌结构控制的过程机理方面的研究取得了重要进展,相关研究成果分  相似文献   

13.
正据了解,清华大学魏飞教授和中国科学院金属研究所苏党生教授研究团队发现,作为非金属碳材料,掺氮碳纳米管比金属催化剂(触媒)更绿色、更环保,且对乙炔氢氯化反应具有显著的催化活性。业内专家认为,纳米碳材料为无汞催化剂的研究开辟了新的思路。其作为一类重要的非金属催化剂材料具有广阔的  相似文献   

14.
锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2)通过异质原子掺杂改善纳米碳材料的电化学性能;(3)将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来...  相似文献   

15.
掺磷对硬碳及软碳嵌锂性能的影响研究   总被引:6,自引:0,他引:6  
为了提高碳材料的嵌锂性能,以沥青和自制的热固性酚醛树脂为原料,制备了掺磷酚醛树脂热解碳和掺磷沥青焦炭,通过充放电实验测量了两种掺磷碳材料的可逆容量,XRD,XPS技术分析了磷的掺杂对碳的组成与结构的影响。结果表明:掺磷使两种碳材料的可逆容量均有明显增加,且磷添加量为20%时增加最显著;磷的掺杂对硬碳的晶格参数无明显影响,而使软碳的石墨化程度下降;酚醛树脂热解碳中的磷主要与碳环相接,少部分同时还与氧相连,而焦炭中的磷则主要与氧成键,且掺磷使焦炭表面氧和氮含量明显增加。  相似文献   

16.
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。  相似文献   

17.
以废弃荔枝果壳为原料,在惰性气体保护下经高温炭化处理,分别以氢氧化钾和草酸钠为活化剂,制备了荔枝壳碳材料。首先,通过X射线衍射(XRD)、扫描电镜(SEM)、BET比表面积等表征方法分析了所制碳材料的特征光谱,然后在三电极体系[循环伏安法(CV)和恒流充放电试验(GCD)]下测试了材料的电化学性能。结果表明:该材料为储能性能较好的碳材料。当电流密度为0.5A/g时,多孔碳的比电容达到209F/g。该材料具有优异的电化学性能,作为超级电容器的电极材料具有广阔的应用前景。  相似文献   

18.
正纳米多孔结构的碳材料由于具有大比表面积、独特的孔结构以及丰富的纳米孔,使其在储能领域应用潜力巨大,也引起了人们的高度重视。然而,对于多孔材料在纳米尺度上,面向不同储能需求的多功能组合和调控仍是目前材料领域的一个难点问题。在国家自然科学基金项目的资助下,中南大学周向阳课题组与香港理工大学Limin Zhou课题组合作,在一  相似文献   

19.
基于多孔碳材料对重金属离子吸附性能的研究进展   总被引:1,自引:0,他引:1  
重金属污染给生态环境及人类健康带来极大危害,是最重要的世界环境问题之一。多孔碳材料对重金属离子具有较好的吸附能力,可用于重金属污水的处理。本文综述了废弃生物质制备碳吸附剂以及掺杂型和聚合物基多孔碳作为新型炭材料,在重金属废水处理中的研究进展,并阐述了其吸附机理以及发展潜力。掺杂型和聚合物基多孔碳材料作为吸附剂的后起之秀,在废水处理中具有较好的发展潜力,因此,开发环境友好、低成本、高效的新型碳材料吸附剂对治理重金属污染具有重要意义。  相似文献   

20.
陈可  沈娟  曾婷  唐蜜 《功能材料》2022,(8):8122-8127
原料来源广泛且绿色生态友好的生物质多孔碳受到广泛关注。白茅草花被成功开发为新型生物质多孔碳的前驱体,采用KOH作为活化剂,尿素作为掺杂剂,一步热解碳化形成氮掺杂多孔碳材料,并对最佳的尿素掺杂比例进行探究。采用SEM,TEM,XRD,Raman, XPS对制备的材料进行表征。通过三电极体系对材料的电化学性能进行测试。结果表明,在氢氧化钾处理后的白茅草花与尿素质量比为2∶1时,制备的电极材料具有最佳的性能。在6 mol/L KOH电解液中,电流密度为1 A/g时,材料的比电容为304.1 F/g,经过5 000次长循环后,容量保持率为96.24%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号