首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用实验室自制茶梗纳米纤维素原位合成纳米纤维素(CNC)/四氧化三铁(Fe_3O_4)纳米球,并对其粒径大小、结晶性质、磁性性能和电化学性能进行分析表征。结果表明,通过原位合成法所制得CNC/Fe_3O_4纳米球,粒子间分散性良好,直径约为10~30 nm;CNC/Fe_3O_4纳米球具有磁化强度34.9 A·m~2/kg的磁特性;CNC/Fe_3O_4纳米球表现出良好的电化学性能,CNC/Fe_3O_4电极的比电容主要是Fe_3O_4产生的赝电容,在电流密度0.03 A/g时,比容量可达30.14 F/g,在0.04 A/g电流密度下,经过500次充放电后容量保持率为78.76%。CNC/Fe_3O_4电极中离子的扩散为Warburg机理。  相似文献   

2.
通过简单的水热法以及后续热处理,成功合成介孔NiCo_2O_4微球。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:合成的NiCo_2O_4拥有丰富的多孔纳米针状结构,表现出较高的比表面积。由于这种三维多孔纳米结构,当NiCo_2O_4微球作为电极材料时,展现出优异的电容特性,在1A·g-1的电流密度下比电容高达1 554F·g-1,而且当电流密度增加到20A·g-1时,电容保持率为87.5%。另外,在5A·g-1的电流密度下,经过2 000次的充放电循环后,比电容仍能保持初始电容的90.4%。良好的电化学性能表明,NiCo_2O_4微球是一种理想的超级电容器电极材料。  相似文献   

3.
通过水热法从生物质废料玉米秸秆中制备表面光滑的碳微球(CMs),并首次将未经碳化或活化的生物质碳微球作为间隔物插入石墨烯片层中合成CMs/rGO复合水凝胶。碳微球在抑制石墨烯片层团聚的同时,可以提高材料的亲水性和表面相容性。基于此复合材料组装的无粘结剂对称型超级电容器表现出良好的双电层电容(0.3A/g时264.1F/g),出色的倍率性能(10A/g电流密度下电容保持率为81.5%),以及优秀的循环稳定性(10A/g下循环10000次,电容保持率为95.6%)。  相似文献   

4.
采用水热法在泡沫镍上生长了球状钴酸镍(NiCo_2O_4)电极材料,利用扫描电镜(SEM)观测了纳米球的表面形貌,利用X射线衍射(XRD)分析了纳米球的结构,通过循环伏安、恒流充放电测试了电极的超级电容性能。结果表明:球状NiCo_2O_4直径500~600nm,均匀生长在泡沫镍骨架上,球状之间存在空隙,可以增大与电解液的接触面积。在电流密度为1A/g,NiCo_2O_4/泡沫镍复合电极放电比电容为970F/g,循环1000次后比电容仍保持在844F/g,放电比容量保持率为82.5%,具有优异的超级电容性能。  相似文献   

5.
由于氮掺杂多孔碳材料不仅保留原有材料的高比表面积、高孔隙率和发达的孔道结构等优势,还兼具杂原子良好的润湿性能和导电性,被广泛应用于超级电容器电极材料的研究。以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料,通过水热法,在高温高压的条件下,分子链进行“自上而下”的折叠,形成三维纳米微球结构。借助对纳米球的高温热解,使氮元素保留在碳材料中,得到含有大量微孔和介孔结构的掺杂氮碳微球。当碳化温度达到800℃时,PI碳球具有709.39m2/g的高比表面积和良好的氮掺杂率,很大程度上提高了此类电极材料的比电容和润湿性能。电化学测试表明,当扫描速率为0.5A/g时,电极材料能够达到253.6F/g的比电容,且在电流密度达到10A/g时,电极材料的电容保持率为59.6%。同时,在循环10000次后,比电容保持率出现涨幅达到105%,具有优异的循环稳定性。综上,通过自组装和氮掺杂的有效结合,制备的3D氮掺杂多孔碳微球具有理想的电化学性能,为制备超级电容器电极材料提供了一种可供参考的工艺。  相似文献   

6.
采用简单的共沉淀法,制备了分散性良好且尺寸均一的钴铝层状双金属氢氧化物(CoAl-LDH)六边形纳米片电极材料,其尺寸约为2μm。三电极体系电化学测试结果表明,在电流密度为1A/g时,CoAl-LDH纳米片电极材料的质量比电容为723F/g,电流密度增加至20A/g时,电容保持率高达72%。CoAl-LDH纳米片电极材料有望成为组装高性能超级电容器的可选电极材料。  相似文献   

7.
以Co(Cl)_2·6H_2O作为钴源,尿素作为沉淀剂,利用水热法在泡沫镍上制备了Co_3O_4纳米颗粒,利用X射线衍射仪和扫描电镜对所制备Co_3O_4纳米颗粒的物相和表面形貌进行了表征,并对其电化学性能进行了测试。结果表明,长在泡沫镍基体上由纳米线构成的花状Co_3O_4颗粒,不仅具有优良的电化学性能,比电容最高可达580.10F/g,且在放电电流密度为4A/g时,循环1000次后比电容仍能保持最初的95.703%,表现出良好的循环稳定性。  相似文献   

8.
以高锰酸钾与乙酸乙酯为起始原料,通过氧化还原反应在85℃温和条件下制得二氧化锰(MnO_2)纳米颗粒,并通过在反应体系中加入碳(C)材料合成了MnO_2/C复合电极材料。实验结果表明,MnO_2在1A/g电流密度下,比电容为212F/g;而添加了2.5mL碳材料的MnO_2/C复合电极材料的比电容达到358F/g;当电流密度增加到4A/g时,MnO_2/C复合电极材料的比电容仍达到234F/g。  相似文献   

9.
采用化学氧化聚合法,以聚乙烯醇(PVA)为稳定剂,制得直径约为200 nm的聚苯胺(PANI)纳米球电极材料。采用XRD、FT-IR、FESEM和TEM对电极材料的组成、结构和形貌进行了表征。在三电极体系中测试PANI纳米球电极的电容性质,电流密度为0.5 F/g时PANI纳米球电极的质量比电容为494 F/g,当电流密度从0.5 F/g增加到20 F/g时电容保持率为71%。  相似文献   

10.
以硝酸钴、尿素为原料,泡沫镍为基底,通过水热、煅烧法制备了Co_3O_4纳米线阵列,并采用扫描电子显微镜、透射电子显微镜及X射线衍射对Co_3O_4纳米线的微观形貌及晶体结构进行了分析。采用电化学工作站测试了Co_3O_4纳米线阵列作为超级电容器电极的电化学性能。结果显示:Co_3O_4纳米线阵列作为超级电容器电极材料在5mA/cm~2的电流密度下,具有高达1670F/g的比电容。同时显示出良好的倍率特性和较高的循环稳定性,应用前景良好。  相似文献   

11.
针对碳电极材料存在比电容小、能量密度低的问题,采用异质成核合成路径制备了新型的碗状空心碳微球,进一步以尿素为氮源,通过水热法制备了高性能氮掺杂碗状空心碳微球。采用X射线衍射仪、场发射扫描电子显微镜、能谱仪、傅立叶红外光谱仪和X射线光电子能谱分析仪对碗状空心碳微球和氮掺杂碗状空心碳微球的形貌及结构进行表征,并分析了氮掺杂对碗状空心碳微球的电化学性能。实验结果表明:氮掺杂对碗状空心碳微球的电化学性能有显著的改善,在1 A/g的电流密度下,氮掺杂碗状空心碳微球的比电容(235.5 F/g)远高于碗状空心碳微球的比电容(121.0 F/g),此外,氮掺杂碗状空心碳微球在3 A/g的电流密度下循环5 000次后,其比电容保持率为78.3%。  相似文献   

12.
用浓硫酸、浓硝酸对石墨进行氧化处理,在水浴条件下再将其与高锰酸钾反应,制得插层石墨/四氧化三锰(Mn_3O_4)复合电极材料。并对材料的形貌、结构和电化学进行表征和分析。研究结果表明,水浴回流制备的插层石墨/Mn_3O_4复合材料,具有类石墨结构,呈针状,比表面积大,具有优异超级电容性能。恒流充放电表明,插层石墨/Mn_3O_4复合材料比/Mn_3O_4具有较大的电流放电能力,在1.0A/g电流密度下,插层石墨/Mn_3O_4复合材料比电容为242F/g,Mn_3O_4比电容为112F/g,插层石墨/Mn_3O_4复合材料的比电容比Mn_3O_4高116%。在电流密度0.1A/g时,插层石墨/Mn_3O_4复合材料的比电容为328F/g。  相似文献   

13.
以化学共沉淀法制备出Fe_3O_4磁性纳米粒子,通过壳聚糖(CS)修饰制备得Fe_3O_4/CS磁性微球,再将Fe_3O_4/CS磁性微球与表面富含羧基的碳量子点(CQDs)连接,合成了以碳量子点为荧光材料的磁性荧光双功能纳米微球Fe_3O_4/CS@CQDs。经过红外光谱仪(FT-IR)、X射线衍射仪(XRD)、荧光分光光度计、振动样品磁强计(VSM)、荧光显微镜及透射电子显微镜(TEM)对该纳米材料表征。结果表明:双功能纳米微球Fe_3O_4/CS@CQDs饱和磁化强度达到13.66emu/g,分散性良好,粒径约为45nm,具有良好的荧光性能及磁响应性,有望取代以半导体量子点作为荧光材料的磁性复合材料,在生物医学等方面得到广泛应用。  相似文献   

14.
由于纯碳材料单一的双电层储能机理, 其比电容较低, 而赝电容材料可利用法拉第反应进行能量存储, 可以获得较高的比电容。作者利用软模板法制备出具有三维有序结构的介孔碳微球, 然后采用水热法制备氢醌改性的介孔碳微球。循环伏安和恒流充放电测试表明, 氢醌改性使得介孔碳微球不仅具有双电层电容, 而且具有赝电容。负载10wt%氢醌的介孔碳微球具有最大的比电容值, 当电流密度为0.5 A/g时, 其比电容值高达285 F/g; 当电流密度增大到10 A/g时, 其比电容值仍高达212 F/g, 表现出优异的倍率特性。这主要归因于氢醌以π-π堆叠方式负载在碳质介孔表面, 不仅提供了额外的赝电容, 而且提高了碳材料在水系电解液中的倍率特性。  相似文献   

15.
水热条件下在炭微球(CMS)载体表面原位生长纳米结构的二氧化锰(MnO2),制备碳微球/二氧化锰(CMS/MnO2)纳米复合电极材料,并应用于超级电容器。采用扫描电镜(SEM)、X射线衍射(XRD)和热重分析(TGA)对复合材料结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究。结果表明,CMS/MnO2复合物中MnO2纳米片均匀地负载在碳微球的表面,形成绣球状结构,MnO2纳米片具有典型的K-Birnessite型晶体结构,其中MnO2的含量约为62%(质量分数),CMS/MnO2比容量达到266F/g;随着反应时间的延长,碳微球表面负载的MnO2纳米片逐渐生长并完善,CMS/MnO2的比容量也呈现先增长后保持不变的趋势。  相似文献   

16.
以碳纳米球为模板,采用硬模板法制得多孔Co_3O_4中空纳米球。分别采用SEM、XRD、FTIR、BET和XPS对Co_3O_4纳米球的形貌和结构进行表征。通过改变前驱体浓度和陈化反应时间调控Co_3O_4中空纳米球的空间结构及气敏性能。结果表明:在前驱体浓度为0.1mol/L、陈化时间为48h时,得到的Co_3O_4中空纳米球的表面呈疏松多孔结构。Co_3O_4中空纳米球直径约为500nm,由40nm的Co_3O_4纳米粒子组成。室温下,由该材料组装的气敏传感器对浓度为100×10-6~0.5×10-6的NH_3有较好的气敏性能;对浓度为100×10-6的NH_3响应灵敏度高达155.8%,响应时间为1.3s。该气体传感器对NH_3的最低检测限为0.5×10-6。  相似文献   

17.
通过自聚合反应及高温热处理手段,再采用化学氧化聚合法在复合物的表面自组装生长聚苯胺(PANI)纳米须,成功构筑了MnO/介孔碳(MC)/PANI三元纳米复合材料。材料的结构及其电化学性能测试结果表明:该复合材料的比电容在1.0A/g的电流密度下达到498.6F/g,显著高于MnO/MC二元复合材料的比电容(212F/g);当电流密度增加至10A/g时,比电容仍能保持352F/g。经过1000次的充放电循环,复合电极的比容量保持率为71.6%。  相似文献   

18.
本工作采用液相沉淀法制备了二氧化锰@碳纳米球电极材料,通过碳纳米球复合的方式对二氧化锰进行改性。经XRD分析可知,合成的材料以水钠锰矿的形式存在;由TEM和SEM分析可知,碳纳米球均匀分布在片层状二氧化锰的表面,使其更加饱满充实。由电化学测量可知,适量碳纳米球的引入明显提高了材料的电化学性能,在二氧化锰复合碳纳米球摩尔分数为100%时,所得材料拥有最佳比容量,即在1 A·g~(-1)电流密度下放电比容量为166.3 F·g~(-1),当电流密度增加到10 A·g~(-1)时,材料的比容量仍能保持在135.9 F·g~(-1),经历2 000次循环后电容保持率高达95.1%,说明材料具有优异的倍率特性和较高的稳定性。这可能是由于引入碳纳米球后提高了水钠锰矿的导电性,从而增加了其活性位点的数量。  相似文献   

19.
利用乳液聚合法制备了聚甲基丙烯酸甲酯(PMMA)纳米球,并以其为模板,对苯胺进行化学氧化聚合后包覆于纳米球表面,经脱掺杂制备了本征态聚苯胺包覆聚甲基丙烯酸甲酯(EB/PMMA)纳米球复合电极材料。采用红外光谱和扫描电镜对电极材料的结构和形貌进行了表征,在三电极和二电级体系中测试了复合电极材料的电化学性能。结果表明,在0.5 mol/L H_2SO_4电解液中,电流密度为3 mA/cm~2,PMMA掺杂量为0.075 g,EB/PMMA复合电极材料比电容可达732 F/g,2000次循环保持率为82.5%。将其与活性炭组装成非对称二电极体系,在H_2SO_4-KI复合电解液中,能量密度可达104 Wh/kg。  相似文献   

20.
使用水热法以钼酸铵为钼源,硫脲为硫源制备了由纳米片组成的三维花状的二硫化钼微球。利用XRD、Raman、SEM和TEM对产物的微观结构和形貌进行了表征。同时通过循环伏安法、恒电流充放电和交流阻抗谱研究了其作为超级电容器电极材料的电化学性能。测试表明MoS2花状微球电极材料在电流密度为0.5A/g时,比电容可达225F/g,具有良好的倍率性能,是一种性能优异的超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号