首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过萃取精馏法,以N-甲基吡咯烷酮(NMP)为萃取剂分离乙酸乙酯-正庚烷的共沸物系。利用溶剂选择原理和UNIFAC基团贡献法筛选N-甲基吡咯烷酮作为萃取精馏的萃取剂,同时通过常压下乙酸乙酯-正庚烷体系和加入萃取剂N-甲基吡咯烷酮后的气液平衡实验,证明N-甲基吡咯烷酮能够打破共沸。并进行间歇萃取精馏实验,填料塔理论塔板数为35,回流比1.0,可以得到质量分数为98.3%的正庚烷,回收率为73.4%。最后在Aspen Plus软件帮助下研究N-甲基吡咯烷酮连续萃取精馏分离乙酸乙酯-正庚烷物系的工艺流程,萃取精馏塔塔顶正庚烷的质量分数可达99.5%,溶剂回收塔塔底回收纯N-甲基吡咯烷酮套用,为进一步的工业应用提供依据。  相似文献   

2.
孙畅  白鹏  梁金华  张鸾 《现代化工》2013,33(6):108-111
首次研究了间歇萃取精馏方法分离环己烷-正丙醇二元共沸物。通过溶剂选择原理选出DMF作为分离此共沸物系的溶剂,采用UNIFAC模型对常压下环己烷-正丙醇物系和加入溶剂DMF后的物系进行气液平衡模拟,并进行了实验验证,其中模拟结果与实验数据吻合较好。通过间歇萃取精馏分离此共沸物的实验研究来进一步考察所选萃取剂的效果。结果表明,DMF能够消除环己烷-正丙醇共沸物系的共沸点,采用有30块理论板的填料塔,萃取剂进料位置为第4块板,溶剂质量比为1∶1,回流比为3∶1时,塔顶环己烷产品质量分数为96.2%,回收率为72.2%。  相似文献   

3.
采用萃取精馏的方法分离乙腈-正丙醇的共沸物系。首先利用溶剂选择原理和UNIFAC基团贡献法选出N-甲基吡咯烷酮作为萃取精馏的萃取剂,同时采用NRTL模型对常压下乙腈-正丙醇物系和加入萃取剂N-甲基吡咯烷酮后的汽液平衡进行模拟和实验验证,模拟结果与实验数据吻合较好。然后通过间歇萃取精馏实验进一步考察所选萃取剂的分离效果。结果表明,N-甲基吡咯烷酮能够打破共沸,有效分离乙腈-正丙醇共沸物系。采用有28块理论板的填料塔,萃取剂进料位置为第4块板,溶剂比为1.0,回流比为3,可以从塔顶得到质量分数为98.6%的乙腈产品。最后,用Aspen Plus软件对乙腈-正丙醇物系的连续萃取精馏流程进行了模拟,得出的参数为进一步的工业应用奠定基础。  相似文献   

4.
利用Aspen Plus对以DMSO为萃取剂的丙酮-环己烷共沸物系的萃取精馏进行了模拟研究。通过灵敏度分析工具,得到了丙酮-环己烷共沸物系的连续萃取精馏最优工艺条件:萃取精馏塔的理论板数36,质量回流比0.32,原料进料位置25,萃取剂进料位置7,萃取剂用量1 750 kg/h,溶剂回收塔的理论板数8,质量回流比0.21,进料位置5时,在最优工艺条件下,分离得到的环己烷质量分数可到99.5%,丙酮质量分数可到99.53%。同时通过间歇萃取精馏,对DMSO作为萃取剂的丙酮-环己烷萃取精馏进行试验验证,通过试验可以得到质量分数为95.35%的环己烷和质量分数为92.24%的丙酮,且二者回收率均可达65%以上,说明以DMSO为萃取剂,通过萃取精馏可以实现丙酮-环己烷共沸物系的有效分离。  相似文献   

5.
通过Aspen Plus化工流程模拟软件,利用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对甲醇-乙酸乙酯共沸物进行了分离模拟研究。确定最优工艺参数为:萃取精馏塔理论板数41,混合物进料位置25,萃取剂进料位置4,回流比2.1,溶剂比3.8;溶剂回收塔理论板数12,进料位置7,回流比0.7。萃取精馏塔塔顶乙酸乙酯质量分数达99.80%,溶剂回收塔塔顶甲醇质量分数达99.74%。对分离过程优化操作及设计提供了理论依据。  相似文献   

6.
刘岩  白鹏 《化学工程》2012,40(12):19-23
为了分离丙酮-四氢呋喃共沸混合物,研究了萃取精馏在丙酮-四氢呋喃物系中的应用。通过溶剂选择原理初选出乙苯作为萃取精馏分离此共沸物系的溶剂,同时采用NRTL模型对常压下丙酮-四氢呋喃物系和加入溶剂乙苯后的汽液平衡进行模拟和实验验证,模拟结果与实验数据吻合较好。然后进行了间歇萃取精馏分离此共沸物的实验研究来进一步考察所选萃取剂的效果。结果表明:乙苯能够消除丙酮-四氢呋喃共沸物系的共沸点,采用有40块理论板的填料塔,回流比为5,溶剂摩尔比为2.5∶1时塔顶可以得到质量分数为99.34%的丙酮产品,说明采用乙苯作萃取剂分离丙酮-四氢呋喃共沸物是可行的。最后又对连续和间歇萃取精馏分离丙酮-四氢呋喃共沸物的流程进行了模拟,得到的工艺参数将为进一步的工业应用提供了理论依据。  相似文献   

7.
于洋  白鹏  李广忠  尹琨  庄琼红 《化工进展》2012,31(4):758-762
提出和研究了以苯胺作为溶剂的甲醇-乙腈间歇萃取精馏分离工艺。根据溶剂极性相似相溶原理,结合ChemCAD软件模拟汽液平衡和汽液平衡实验确定苯胺为合适的溶剂。结果表明,不仅苯胺能够消除甲醇-乙腈物系的共沸现象,效果优于N,N-二甲基甲酰胺(DMF),而且可以采用Wilson模型对苯胺作为溶剂的甲醇-乙腈共沸物系汽液平衡进行模拟。通过实验考察了间歇萃取精馏的分离效果。采用有33块理论板的填料塔进行间歇萃取精馏甲醇-乙腈共沸混合物分离实验,其中净化回收段填料层3块理论板,萃取精馏段填料层30块理论板,回流比为4,苯胺作为溶剂,溶剂质量比为2.5∶1时,在塔顶得到产品甲醇质量分数为98.97%,高于DMF作为溶剂时的95.76%;表明苯胺更加适合作为萃取精馏分离甲醇-乙腈共沸物系的溶剂。  相似文献   

8.
采用萃取精馏的方法分离乙酸乙酯和丁酮共沸物系。选取乙二醇作为萃取剂,利用流程模拟软件Aspen Plus对流程进行模拟,分析不同萃取剂进料量、塔板数、回流比、进料位置等参数对产品质量分数及热负荷的影响。通过模拟发现,当乙二醇进料量为500 kg/h、萃取精馏塔塔板数为30、质量回流比为0. 45、原料进料位置为17块板、萃取剂进料位置为5块板,溶剂回收塔塔板数为10、质量回流比为0. 5、进料位置为第4块板时,可得到质量分数为99. 91%的乙酸乙酯及质量分数为99. 60%的丁酮。通过间歇萃取精馏实验对萃取精馏过程进行验证,发现萃取精馏塔塔顶可得到高达质量分数为98%的乙酸乙酯,证明了模拟结果的可靠性。  相似文献   

9.
利用COSMO-SAC模型对常用萃取剂进行筛选,进而确定对二甲苯适合作为分离乙醇-丙酸乙酯二元共沸物系的萃取剂,并利用汽液平衡实验验证了所选萃取剂的分离效果。结果表明对二甲苯能够分离乙醇-丙酸乙酯共沸物系。采用Aspen Plus模拟软件对乙醇-丙酸乙酯-对二甲苯三元体系进行了连续萃取精馏模拟,并获得了适宜的工艺参数:萃取精馏塔中,理论塔板数为60块,原料进料位置为第50块塔板,萃取剂进料位置为第25块塔板,回流比为7,溶剂比为0.8,塔顶乙醇的含量可达到99.85%;溶剂回收塔中,理论塔板数为30块,进料塔板的位置为第11块塔板,回流比为6,塔顶得到丙酸乙酯的质量分数为99.0%。  相似文献   

10.
进行了环己烷-四氢呋喃物系的加盐萃取精馏实验研究。将NaSCN、NANO3、KI三种盐溶于N,N-二甲基甲酰胺中进行加盐汽液平衡实验,实验表明NaSCN能最大限度地提高体系的相对挥发度.NaSCN的适宜质量分数为8%-13%;进行了间歇加盐萃取精馏分离环己烷-四氢呋喃的工艺研究.结果表明NaSCN质量分数为13%,溶剂比为1:1,溶剂流率为10mL/min为适宜的实验操作条件。  相似文献   

11.
利用Aspen Plus化工流程模拟软件采用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对乙酸乙酯和异丙醇共沸体系的分离进行了模拟和优化。确定最优工艺参数为:萃取精馏塔理论板数43,混合物进料位置28,萃取剂进料位置4,回流比2.3,溶剂比4;溶剂回收塔理论板14,进料位置8,回流比1。萃取精馏塔塔顶乙酸乙酯含量99.80%,溶剂回收塔塔顶异丙醇含量99.40%。对工业化分离过程优化操作及设计具有指导意义。  相似文献   

12.
苯和环己烷混合物是化工中非常典型的二元共沸物系。选用二甲基亚砜(DMSO)和N-甲基吡咯烷酮(NMP)的质量配比为DMSO∶NMP=1∶3作为混合溶剂,在前期实验验证基础上,采用ASPEN PLUS11.1化工模拟软件中的BatchFrac单元操作模块,采用UNIFAC物性计算方法,通过改变各操作参数,对苯和环己烷二元共沸物系的分离进行间歇萃取精馏模拟计算。模拟结果表明:常压操作条件下,塔顶环己烷质量分率可达到98%,模拟计算的运用能够为实验进一步研究提供很好的理论依据和设计参考。  相似文献   

13.
应用化工过程模拟软件Aspen Plus对丙酮-氯仿最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、回流比、原料进料位置、萃取剂进料位置、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为45,原料和萃取剂分别在第11块和第3块理论板进料,回流比为2.5,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶丙酮的分离效果达99.95%,萃取剂回收塔塔顶氯仿的纯度达到98.34%;萃取剂二甲基亚砜的循环补充量为5.557mol/h。模拟与优化结果为丙酮-氯仿共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

14.
应用化工过程模拟软件Aspen Plus V7.3对甲醇-四氢呋喃最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、原料进料位置、萃取剂进料位置、回流比、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为32,原料和萃取剂分别在第26块和第4块理论板进料,回流比为3,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶四氢呋喃的分离效果达99.98%,萃取剂回收塔塔顶甲醇的纯度达到99.96%;萃取剂二甲基亚砜的循环补充量为8.58 mol/h。模拟与优化结果为甲醇-四氢呋喃共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

15.
加盐萃取-精馏耦合分离苯-环己烷共沸物   总被引:1,自引:0,他引:1  
采用N,N-二甲基甲酰胺(DMF)+硫氰酸钾(KSCN)萃取分离苯-环己烷共沸物,并用常规间歇精馏处理富含苯的萃取液。考察了不同溶剂与原料液的体积比、盐质量分数对该体系分配系数及选择系数的影响,并进行了多级错、逆流萃取实验及精馏实验。实验结果表明:7级错流萃取可得摩尔分数大于97%(脱溶剂摩尔分数)的环己烷;5级逆流可得摩尔分数大于75%(脱溶剂摩尔分数)的环己烷;精馏后的萃取液,苯摩尔分数可达98%以上,DMF+KSCN摩尔分数可达96%以上。加盐萃取-精馏耦合分离苯-环己烷共沸物可得到令人满意的分离效果,是一种绿色节能的新方法。  相似文献   

16.
利用UNIFAC基团贡献法对常用萃取剂进行了筛选,选取邻二甲苯作为该二元共沸物的萃取剂,并通过汽液平衡实验对其分离效果进行了验证;进行甲醇 甲苯分离的间歇萃取精馏实验考察所选萃取剂的效果。结果表明:邻二甲苯能够有效提高甲醇 甲苯的相对挥发度。间歇萃取精馏塔塔板数为30,溶剂比为1,恒回流比(R=3)操作下塔顶得到摩尔分数为99.688%的甲醇产品。  相似文献   

17.
离子液体萃取精馏分离乙醇-环己烷共沸物   总被引:3,自引:0,他引:3  
在0.101 MPa压力下,测定了不同离子液体对乙醇-环己烷共沸物相对挥发度的影响,研究了溶剂比(萃取剂与原料液体积比)对体系相对挥发度、离子液体加入速率和回流比对萃取精馏的影响,按实验确定的最佳工艺条件进行了重复实验. 结果表明,离子液体作为萃取剂可以消除乙醇-环己烷物系的共沸点,提高该物系的相对挥发度. 采用[bmim]PF6作为萃取剂,溶剂比为0.5,离子液体加入速率为6 mL/min,回流比为3,可得到纯度大于99.8%的环己烷. 釜液采用闪蒸分离回收乙醇和离子液体,乙醇的回收率达99.9%以上. 离子液体的循环使用不影响分离性能.  相似文献   

18.
通过减压间歇萃取精馏实验装置,选用N,N-二甲基甲酰胺(DMF)作为萃取剂,对乙酸乙酯和乙醇二元共沸物系的分离进行了实验研究。考察了操作参数中操作压强、回流比(体积比)、溶剂比(体积比)对分离过程的影响。实验结果表明:减小压强、提高回流比和溶剂比都能不同程度地增强分离效果,实验得出减压操作情况下的间歇萃取精馏的较佳分离条件:操作压力为10 kPa,回流比为3,溶剂比为1,产品中乙酸乙酯的质量分数为97%以上。  相似文献   

19.
间歇萃取精馏分离乙腈-水体系   总被引:1,自引:0,他引:1  
选择乙二醇为分离乙腈-水体系的萃取剂,在压力0.101 MPa条件下,测定了乙腈-乙二醇物系的汽液平衡数据。采用Wilson模型对试验数据进行关联,得到Wilson模型参数,α1,3=5 683.6,α3,1=576.4(下标1代表乙腈,3代表乙二醇),关联的计算结果和试验结果的最大偏差为0.015 7。测定了乙二醇存在下乙腈-水物系的汽液平衡数据,试验结果表明乙二醇做萃取剂能够消除乙腈-水物系的共沸点。进行了乙腈-水物系的间歇萃取精馏试验,回流比为2.0,萃取剂流量与回流量之比(溶剂比)为4.1,塔顶产品中乙腈的摩尔分数x达到0.988,乙腈的回收率为75%。应用Chemcad软件考察溶剂比和回流比对产品纯度及塔顶产品量的影响,确定适宜溶剂比为3.0,其回流比值在0.5~2.0之间。  相似文献   

20.
加盐萃取精馏分离苯-环己烷   总被引:1,自引:1,他引:0  
测定不同萃取剂和盐对苯-环己烷共沸物相对挥发度的影响,研究不同质量分数的盐和萃取剂与原料液体积比对苯-环己烷体系相对挥发度的影响以及萃取剂加入速率和回流比对加盐萃取精馏的影响,按实验确定的最佳工艺条件进行重复实验。结果表明:采用N,N-二甲基甲酰胺(DMF)作为萃取剂,加入质量分数为15%的KAc,萃取剂与原料液体积比为0.75,萃取剂加入速率为6 mL/min,回流比为3,可得到纯度大于98%的环己烷。与常规萃取精馏相比,加盐萃取精馏所需萃取剂与原料液体积比小,所得环己烷的纯度较高。塔底釜液经减压精馏,可得质量分数大于99.5%的苯和苯质量分数小于0.15%的加盐萃取剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号