首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为揭示润湿性对微纳复合结构表面池沸腾传热的影响,采用电刷镀工艺和表面改性技术在紫铜表面制备了接触角分别为6.5°和148.6°的超亲水性和超疏水性微纳复合结构,通过实验对比研究了不同表面的饱和池沸腾传热特性,结果表明:(1)超亲水性和超疏水性微纳复合结构的最大换热系数较光表面分别提高了3倍和1.5倍;(2)在q580k W×m~(-2)的低热流密度区,超疏水性微纳复合结构的换热系数最大;当q580 k W×m~(-2)时,超亲水性微纳复合结构的传热性能开始优于超疏水性微纳复合结构;(3)超亲水性微纳复合结构表面的临界热流密度较光表面和超疏水性微纳复合结构分别提高了110%与60%;微纳复合结构显著增加了受热表面的气泡核化密度,而亲水性微纳复合结构的毛细吸液能力要显著强于疏水性微纳复合结构,是临界热流密度增大的主要机理。  相似文献   

2.
何照荣  范志卿  王大成 《化工进展》2018,37(12):4533-4542
通过电火花成型加工技术在铜基换热表面制备微纳结构改性表面,以自制换热表面性能测试装置进行改性表面的池沸腾换热性能实验。改性表面随加工电流改变而具有不同粗糙度、孔隙率和粗糙度因子,表面接触角范围在117.4°~133.5°。实验结果表明,改性表面的微纳结构提高换热面的池沸腾换热效果,临界热流密度较光滑铜表面提高了26%~87.8%,最大传热系数提高了48.1%~213%。改性表面的传热系数随着粗糙度增大而减小,而临界热流密度则是先增大后减小;孔隙率的增大使得改性表面的传热系数也随之增大,临界热流密度则是随着孔隙率的增大而先增大后减小;临界热流密度随着粗糙度因子的增大而降低,传热系数则是先增大后降低。粗糙度对沸腾换热的强化效果较小,孔隙率和粗糙度因子是强化池沸腾换热的关键,孔隙率和粗糙度因子分别影响了气泡核化密度和实际接触面积,提高了气泡脱离频率,带走更多的热量,但两者间存在互相制约的平衡关系。  相似文献   

3.
采用阳极氧化法在钛板表面制备出TiO2纳米管阵列,并以其为加热表面。以含不同浓度丁醇的自润湿溶液为实验工质,考察了自润湿溶液浓度变化对系统临界热流密度和传热系数的影响,并从气泡行为的不同分析了两者耦合强化传热的机理。结果表明:相比于光滑表面和蒸馏水的常规组合,TiO2纳米管表面和自润湿溶液耦合传热使得系统的临界热流密度大幅度提高,随自润湿溶液浓度的升高,传热系数依次降低。具有超亲水性和较大粗糙度的纳米管表面与1%(质量分数,下同)自润湿性溶液相耦合时,其最大传热系数和临界热流密度分别为11.963 kW·m-2·℃-1与623.706 kW·m-2,比常规组合传热分别提高了84.1%和143.8%。由气泡可视化可知,耦合传热在沸腾过程中产生的气泡细小,脱离速度快,不易团聚,合并后的气泡易破碎,易形成微气泡,从而使系统进入剧烈的微气泡沸腾状态。气泡的高脱离频率和特殊有效的液体补充路径,是提高系统传热系数和临界热流密度的主要原因。  相似文献   

4.
采用阳极氧化法在光滑钛板表面制备了高度有序的纳米管表面,利用扫描电镜、原子力显微镜和全自动接触角测量仪表征了纳米管表面和光滑表面的形貌及表面特性,配制自润湿溶液并进行热物性测定,将不同的加热面(光滑表面和纳米管表面)与不同工质(蒸馏水和自润湿溶液)组合进行池沸腾实验,从不同角度对比了不同组合工况的传热效果,从微观和宏观两方面对纳米管表面和自润湿溶液耦合强化传热的机理进行了分析。结果表明,具有超亲水性和较大粗糙度的纳米管表面与自润湿性溶液耦合时,最大传热系数和临界热流密度较高,分别为11.963 kW/(m2?℃)和623.706 kW/m2,比光滑表面与蒸馏水的常规组合传热分别提高了84.1%和143.8%。纳米管表面和自润湿溶液对系统的最大传热系数和临界热流密度强化作用稍有不同,二者协调强化沸腾传热性能。纳米管表面具有更多的有效汽化核心、更大的粗糙度和更好的润湿性,结合自润湿溶液特殊的表面张力特性形成冷热液体微循环,促进冷热液体运动,及时进行二次润湿,大幅减小气泡脱离直径,提高其脱离频率,出现微气泡,增加了对系统的扰动,有效增强了传热性能,是提高系统最大传热系数和临界热流密度的主要原因。  相似文献   

5.
采用氧-乙炔火焰喷涂金属粉末工艺在不锈钢基板表面制备不锈钢基多孔层,用于强化高功率电子器件沸腾水冷。研究了喷涂火焰功率对多孔层结构的影响,制备的多孔层孔隙率最高可达48.7%。建立了池沸腾实验系统,对比测试了光滑表面和多孔层修饰表面(多孔表面)在去离子水中的饱和池沸腾传热性能;并采用高速摄像机对沸腾现象进行可视化研究。结果表明:多孔表面起始沸腾过热度较光滑表面可降低1.4—2.7 K;多孔表面可显著强化沸腾传热,且强化效果随多孔层孔隙率的增大而增强,多孔表面最高传热系数为50.1 k W/(m~2·K),最高临界热流密度(CHF)为1 596.1 kW/m~2,分别比光滑表面提高了60%和30%;多孔表面汽化核心数量多,且脱离气泡不易汇聚,故表现出较好的沸腾传热特性。研究结果为该类型多孔表面用于电子冷却强化提供了一定依据。  相似文献   

6.
多孔表面强化沸腾传热的研究进展   总被引:2,自引:0,他引:2  
本文综述了多孔表面用于强化沸腾传热的研究工作。即介绍了多孔表面的形成和结构表征方法、多孔表面的沸腾传热性能以及描述多孔表面沸腾传热机理的物理和数学模型,同时分析了影响多孔表面沸腾传热性能的因素,探讨了多孔表面强化沸腾传热研究的发展方向。  相似文献   

7.
多孔表面是提高沸腾传热性能的有效表面改性技术。为探究多孔表面的制备参数对沸腾传热性能的影响,应用电化学沉积法在不同的沉积时间和电流下制备了多孔表面,并在常压下对去离子水进行了池沸腾实验。与普通表面相比,多孔表面显著提高了沸腾传热性能。最大临界热流密度(CHF)和最高传热系数(HTC)分别达到3.00 MW/m2和136 kW/(m2·K),比光滑表面分别提升了145%和156%。CHF和HTC对多孔表面的增强归因于气化核心数量增加、传热面积的增加和毛细芯吸力的增强。  相似文献   

8.
石尔  易苹  赵斌  汪琼  张成云 《化工进展》2023,(12):6171-6179
微纳复合多孔结构对相变换热的强化是能源化工领域的重要主题。基于气液协同输运的概念,通过飞秒激光正交扫描加工,在硅片上生成二维嵌套的纳米孔链双层复合多孔结构,实验研究了其对HFE-7100过冷池沸腾传热特性的影响。实验结果表明,相比于光滑表面,多孔表面在35K过冷池沸腾条件下的起始过热度从16.7K下降到12.3K,降低26.3%,最大临界热通量提高128.7%。同时利用高速摄影观察气泡行为来研究强化沸腾传热机理。研究发现,双层多孔结构表面和内部形成的大量连通孔穴大幅度增加了有效成核位点,纳米孔和双层连通结构提供垂直和水平方向的液体补充通道,在高热通量下气泡尺寸更小,脱离更快。有效汽化核心密度增加以及气液自适应协同输运增强了多孔网络中的微液膜蒸发和微对流作用,从而有效提升沸腾换热能力和临界热通量。  相似文献   

9.
增加表面亲水性是强化淬火过程沸腾传热、提高淬火速率的有效途径,对工程应用中实现高温物体的快速冷却具有重要意义。通过电化学阴极沉积的方法,在不锈钢柱体表面沉积金属镍颗粒,制备了一种具有较规整三维结构的微多孔超亲水表面。对其在常压饱和去离子水中进行淬火试验,研究其瞬态池沸腾传热特性,并与光滑亲水表面及微粗糙超亲水表面进行对比。结果表明,微多孔表面加快了淬火进程,冷却时间较亲水表面和无孔超亲水表面分别缩短约52%和22%。微多孔表面的临界热流密度较亲水表面提高了33%,但与超亲水表面相比却略有降低。多孔结构的存在产生了"肋片效应",使得表面局部冷却,突起的孔壁更易"刺穿"汽膜,从而使得微多孔表面的Leidenfrost温度较亲水表面与超亲水表面分别提高了约300和190℃。该表面所具有的较强芯吸性也改善了液体对于表面蒸干区域的再润湿能力,加速淬火过程中膜态沸腾向过渡沸腾的转变。  相似文献   

10.
高学农  杨少华 《化学工程》1999,27(2):15-17,22
混合制冷工质的传热性能差,使得其应用受到一定限制,而采用适当的强化传热技术可以大大提高混合制冷工质传热性能。实验的热流密度范围内,在相同的热流密度条件下,非共沸混合制冷剂R134a/R142b在机械加工表面多孔管外沸腾传热膜系数是光滑管的1.78~3.33倍。  相似文献   

11.
郑晓欢  纪献兵  王野  徐进良 《化工进展》2016,35(12):3793-3798
为研究超亲/疏水性表面对沸腾传热的影响,用H2O2氧化的方式制备了超亲水表面,用氨水加高分子修饰的方式制备了超疏水表面。在常压下以蒸馏水为工质,采用高速摄影仪对其进行了池沸腾传热实验。结果表明,超疏水表面亲气疏水,在沸腾起始点易于产生气泡,且气泡不易脱离,此时壁面过热度ΔTs仅为2.4K,但随热流密度的增大,气泡易于聚合,所产生的大气泡阻碍了传热的进行,传热开始恶化,临界热流密度(CHF)较低;而H2O2氧化的表面由于刀片状微纳结构的存在,增加了表面的粗糙度,不仅增大了相变传热表面积、增加了核化点数量,而且具有超亲水特性,气泡脱离频率较大,大大强化了沸腾传热,最大换热系数约是光表面的1.7倍,且相应地提高了CHF,可达131.0W/cm2,表现出较好的传热特性。  相似文献   

12.
张伟  牛志愿  李亚  赵亚东  徐进良 《化工进展》2018,37(10):3759-3764
采用电刷镀和表面改性技术,在紫铜表面制备了纯镍微结构(TS1)、亲水性石墨烯/镍复合微结构(TS2)以及疏水性石墨烯/镍复合微结构(TS3)。采用扫描电镜和接触角测量仪分别对三类微结构的表面形貌和润湿性进行了表征;以去离子水为工质,对三类微结构表面的池沸腾传热特性进行了实验研究,发现含有石墨烯的TS2和TS3较TS1的沸腾传热性能均显著改善,其中,TS3具有最大的传热系数和最高的临界热流密度,与TS1相比,其最大传热系数和临界热流密度分别提高了135%和97%。分析表明,TS3具有复杂三维堆叠微结构,疏水性微结构减小了气泡成核的活化能,增加了核化密度,是传热系数提高的主要因素,同时,三维堆叠微结构增加了受热表面的毛细吸液再润湿能力,是临界热流密度提高的主要机理。  相似文献   

13.
微通道内流动沸腾不稳定性影响因素实验研究   总被引:1,自引:0,他引:1  
微通道沸腾不稳定性降低设备运行性能及传热特性。设计入口集成种子汽泡发生器的三角形硅基微通道热沉。搭建同步光学可视化测量实验台。研究加热膜长度、质量流量及种子汽泡触发频率对微通道内沸腾不稳定性及传热影响。结果表明:加热膜长度和质量流量作为控制沸腾不稳定性的关键参数,加热膜长度越长或质量流量越低,沸腾起始点和临界热流密度越早发生。单相液体区域,热流密度增大,压降略微降低,温度线性升高。汽液两相区域,热流密度增大,压降迅速增大,温度呈指数式上升。触发种子汽泡作为一种主动式控制技术,沸腾不稳定性得到抑制或消除,换热得到显著增强,是一种值得推广的技术。  相似文献   

14.
为了分析质量流速、热流密度和管径对丙烷在水平微肋管内的沸腾传热强化特性的影响,定义了表示微肋管沸腾传热强化程度的强化因子,在饱和温度为11℃的工况下,分别采用水平光滑管和微肋管进行沸腾传热特性实验。结果表明:干度为0.1时,不同质量流速下强化因子几乎相等;干度大于0.1时,强化因子随质量流速的增加而增大;高质量流速下强化因子随干度增加而增大,而低质量流速下则随干度增加先减后增,且高热流密度下更早出现强化因子急剧增大现象。此外,管径越小的微肋管内沸腾传热的强化因子越大,强化传热效果更佳。  相似文献   

15.
表面改性是提高沸腾换热性能的重要手段。本文以自主开发的微结构表面为基础,简述了近三年来常重力条件下的微/纳结构表面强化池沸腾换热、临界热流密度预测模型及经验关联、微重力条件下(重力水平为10-2~10-3 g 0g 0=9.8m/s2)加热面尺寸对沸腾换热的影响和气泡动力学等方面的研究进展。对柱状微结构参数和排布方式进行优化后的多尺度复合微结构表面相比柱状微结构表面和光滑表面,其壁面温度可分别降低8K和30K以上,而临界热流密度(CHF)则分别提高了28%和119%以上。体积分数为0.02%的乙醇/银纳米流体相对于单纯的乙醇工质,相同条件下换热壁面温度可降低8~15K,而机械作用对CHF约有25%的提高。通过对柱状微结构的几何参数以及临界发生时的供液机理研究,建立了考虑柱状微结构参数的CHF关联式、微/纳结构表面考虑液体毛细芯吸作用的CHF预测模型以及考虑液体铺展速度的CHF预测关联式。根据微重力下加热面尺寸对沸腾的影响的研究,提出了基于恒定热流密度的换热预测关联式。考虑微重力条件下主气泡和小气泡的表面张力,对传统的气泡脱离直径预测的力平衡模型进行了改进,进一步提高了微重力下气泡的脱离半径的预测精度。此外,对近年来以FC-72为工质的其他强化池沸腾换热微结构表面的研究成果进行了总结,并与自主研发的微结构表面换热性能进行了对比与分析,为今后的研究方向和应用指出了方向。  相似文献   

16.
为了从纳米尺度了解表面结构和润湿性对池沸腾液体与固体壁面的传热性能,本文采用分子动力学方法研究了超亲水至超疏水不同润湿性的液体氩在光滑表面和含凹、凸半球纳米结构表面的沸腾传热过程,分析了三种表面上液氩在受热过程的形态、温度、热流密度等相关参数的变化情况。结果表明,液氩层沸腾过程大致可分为液氩层吸附于固体表面和液氩层从壁面脱离两个加热阶段,当液氩层吸附于固体表面时,温度升高、热流密度及气态氩原子产生速度均大于液氩层脱离壁面时的情况,在这两个阶段亲水表面上氩原子温度变化有明显的拐点,而疏水表面在两个阶段加热过程相差不大。亲水表面上的微结构能吸附更多液氩原子,促进了气泡产生及加速温度、热流密度的变化,而在疏水及超疏水微结构表面,微纳结构与液氩间的气膜层促进了气泡产生,计算结果为池沸腾传热及微结构选择提供了理论依据。  相似文献   

17.
水平椭圆多孔管外降膜沸腾传热的研究   总被引:4,自引:0,他引:4  
陈仲言 《化学工程》1990,18(3):35-40
将椭圆截面多孔表面管用于强化水平管外喷淋式降膜沸腾传热过程,研究了强化传热机理,分析了各种因素对该传热过程的影响,并将实验数据拟合成数学关联式。实验结果表明,椭圆截面多孔表面管能够显著地提高水平管外喷淋式降膜沸腾传热性能。  相似文献   

18.
多孔材料对沸腾换热的强化是能源化工领域的重要主题。本文针对两种不同的烧结结构——并联微通道和扁平通道(仅有烧结底层),以去离子水为工质,进行了过冷流动沸腾换热实验对比研究。研究发现:并联微通道的传热系数和临界热流密度远高于扁平通道,这和并联微通道优异的毛细供液性能相关。底厚粒径比对并联微通道的沸腾换热性能影响较大,过大的底厚粒径比会造成换热性能的下降。质量通量对小粒径样品的沸腾曲线和换热性能均影响较大,对大粒径(d=120μm)样品的沸腾曲线影响较小。烧结并联微通道的平均压降大于扁平通道。相同底厚下,平均压降随着微通道粒径的增大而增大。可视化观察表明:两种通道在中高热流密度流型不同,其主要相变机制均为薄液膜蒸发模式。  相似文献   

19.
为解决相变传热过程对空间尺度的矛盾性需求,通过粉末烧结和表面处理的方法制备了乳突状多尺度结构表面,研究了多尺度结构、颗粒直径和润湿性等因素对池沸腾传热特性的影响。实验结果表明,乳突状多尺度结构可有效分离气液流动路径,强化传热,临界热流密度可提高至光表面的2.2倍,且发现其传热性能随颗粒直径的增加而提高。经H_2O_2氧化处理后,加热表面的润湿性得以改善,并构成纳-微-毫3尺度结构,其中纳米级尺度结构用于拓展相变面积,微米级尺度孔隙用于液体吸入,毫米级尺度孔隙用于蒸汽溢出,3种尺度分工合作,将不同的相变过程合理地分配到与之相适应的尺度空间内,使多尺度表面的传热性能得到进一步提高。  相似文献   

20.
新型多孔微热沉流动与传热的耦合数值分析   总被引:1,自引:0,他引:1  
提出一种新型的多孔微热沉系统来实现高热流密度电子元器件封装散热的需求,分析了多孔微热沉系统的工作原理和特点,建立了微热沉金属壁面的传热以及多孔区域的流动与传热的耦合数学模型,并用SIMPLE算法对其进行整场求解,详细讨论了不同的热流、回流液入口速度以及进口位置对多孔微热沉传热性能的影响。数值计算结果表明,多孔微热沉在高热流密度情况下,加热表面能维持较低的温度水平。热流越大,加热表面的温度就越高;增加回流液体的入口速度可以明显的降低微热沉加热表面及底面的温度水平;多孔微热沉的下进口方式能够减小散热表面温度的不均匀性。多孔微热沉系统能有效解决高热流密度电子元器件的散热问题,提高器件可靠性与使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号