共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
锂硫电池因其理论能量密度高、原材料丰富、成本低廉等优点而受到广泛关注。然而硫正极电导率低、体积膨胀、以及脱嵌锂过程中多硫化物产生的穿梭效应等问题限制了锂硫电池的商业化应用。其采用导电材料作为硫载体,一方面可缓解体积膨胀,另一方面可改善正极导电性,同时一定程度上限制多硫穿梭。多级孔碳由于具有导电性优良、结构稳定、孔径及形貌可控等优点,被认为是一种理想的硫载体。从锂硫电池的发展背景出发阐述了多级孔碳作为硫载体的研究意义,首先介绍了多级孔碳材料的制备方法如硬模板法、软模板法和活化法等,进一步介绍了碳材料中的微孔、介孔及大孔在锂硫电池中提升导电性、稳定结构和抑制多硫穿梭效应的作用机理,最后对多级孔碳作为硫载体推进锂硫电池的发展前景进行了展望。 相似文献
9.
10.
11.
锂硫电池具有高能量密度(2600 Wh·kg-1)和高理论比容量(1675 mAh·g-1)的优越特性,引起了研究者的极大关注.然而,锂硫电池(LSBs)的商业化应用,仍然面临硫的导电性低、多硫化物的穿梭效应以及充放电过程中体积急剧膨胀等技术阻碍.本文重点介绍了通过开发硫/碳复合电极材料来提高LSBs电化学性能的一些有... 相似文献
12.
锂离子电池正极材料磷酸铁锂研究进展 总被引:1,自引:1,他引:1
与氧化钴锂(LiCoO2)、氧化镍锂(LiNiO2)相比,橄榄石结构磷酸铁锂(LiFePO4)具有安全、环保、比容量高、循环性能优异、高温特性好等优点,被誉为最具发展前景的锂离子电池正极材料。长的循环寿命、优良的高倍率放电性能、高的放电平台、大的能量密度以及良好的热稳定性能,也使得磷酸铁锂成为高功率动力电池正极的首选材料。但是,磷酸铁锂也存在电子电导率相对较低、锂离子扩散系数小、振实密度不高、低温特性不好等缺点,因而制约着它的应用和发展。从磷酸铁锂结构、性能、制备和改性等方面综述了近年来磷酸铁锂的研究进展。 相似文献
13.
锂离子电池正极材料磷酸铁锂研究进展 总被引:1,自引:0,他引:1
磷酸铁锂(LiFePO4)作为新一代锂离子电池正极材料,以其高安全性、稳定的循环性能、环境友好和价格低廉等优点引起了人们极大的关注,虽然它的研究时间比较短,但是很快实现了商品化。LiFePO4具有170 mA.h/g的理论比容量和3.5 V左右的平稳放电平台,由于存在电导率低的问题,它的大规模应用受到限制。从材料的制备和改性等方面综述了近年来LiFePO4材料的研究进展,比较了不同的合成方法及掺杂对材料性能的影响,认为掺杂少量高价金属离子是提高LiFePO4电导率的一种有效方法。继续进行深入的理论研究和进行工艺改进将是今后重点的研究方向。 相似文献
14.
锂微电池为便携式装置带来革命性的改变,近年来国内外对锂微电池的开发和研究非常活跃。其中薄膜锂离子电池材料的性能是制约其应用的一大瓶颈,尤其是正极材料,研制高能,稳定,低廉,环保的材料是面临的一大挑战。本文就近期研究较多的LiCoO、LiMnO、LiFePO等正极材料的结构和性质,及其制备方法进行了阐述,分析了各种材料的优缺点,提出了一些改进方法。 相似文献
15.
《山东化工》2018,(24)
本文采用同步碳化与活化的方法将鸡蛋碳化制备了三种生物质多孔材料,并将其应用于锂硫电池复合正极材料。研究结果表明:鸡蛋与Na OH溶液混合,在700℃、800℃和900℃下保温4h,可以得到无定型结构的类石墨碳,800℃下制备的多孔材料(Egg-800)孔径较均匀,中孔直径约为4 nm,BET比表面积为205 m2·g~(-1); Egg-800/S正极具有最优的电化学性能,0. 05 C倍率下放电比容量达到899 m Ah·g~(-1),高于Egg-700/S和Egg-900/S的601和730 m Ah·g~(-1);从2 C的高倍率再次回到0. 2 C时,Egg-800/S的放电比容量依旧可以恢复到初始倍率0. 2 C的89%。 相似文献
16.
以常见废旧落叶为原料,通过改变制备工艺参数得到性能优异且具有较大比表面积的活性炭。落叶制备的活性炭负载硫后做为锂硫电池正极材料,硫负载量高达70%(wt.%)。采用SEM、红外、BET等方法,分析正极材料的结构和官能团。本文制备出的活性炭,比表面积可高达2894.25 m2·g-1。在0.1 C循环时首圈放电比容量可达1295 mAh·g-1,0.5 C循环200圈后比容量还能维持在507mAh·g-1。电池在2 C时电池放电比容量可达535 mAh·g-1,当倍率恢复到0.2 C时,容量可以恢复到756 mAh·g-1,体现了材料优异的电化学性能。 相似文献
17.
锂离子电池磷酸铁锂正极材料的研究进展 总被引:2,自引:0,他引:2
磷酸铁锂正极材料因其优良的电化学性能,被认为是最具应用前景的锂离子电池正极材料之一。但由于其导电率低和锂离子扩散速率慢等问题,一直制约其发展。本文阐述了磷酸铁锂的晶体结构、充放电原理以及电化学反应模型,回顾了近年来国内外对于改善磷酸铁锂的电化学性能所进行的研究,重点介绍了离子掺杂、碳包覆以及材料纳米化等改性方法对锂离子电池磷酸铁锂正极材料的影响以及目前仍然存在的问题,最后展望了该领域的发展趋势,指出继续进行深入的理论研究和进行工艺改进将是今后重点的研究方向。 相似文献
18.
19.