首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用传统的高温固相反应法在较低温度下制备红色荧光体Eu~(3+)掺杂的Ca_2SiO3_Cl_2,研究了Ca_(2-x)SiO_3Cl_2∶xEu~(3+)(x=3%~18%)的晶体结构和发光性质。激发和发射光谱表明,样品可以被近紫外350~420nm波段激发,最强激发峰位置位于394nm,发射光谱呈现出Eu~(3+)的特征红色发光,谱带峰值位置在592nm和620nm,分别对应于~(5 )D_0→~7F_1和~(5 )D_0→~7F_2特征跃迁。结果表明:最强发射对应的掺杂浓度是15%(摩尔分数),样品Ca_(1.85)SiO_3Cl_2∶0.15Eu~(3+)荧光粉是一种具有应用潜力的近紫外激发三基色白光LED用红色荧光粉。  相似文献   

2.
采用高温固相法制备了GdVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和光致发光光谱(PL)对样品的物相、形貌及发光性能进行了表征。结果表明:所合成的GdVO_4:Eu~(3+)红色荧光粉为四方晶系,表面为类球形。激发光谱中,位于382 nm、395 nm、418 nm和466 nm的激发峰分别归属于~7F_0→~5L_7、~7F_0→~5L_6、~7F_0→~5D_3及~7F_0→~5D_2跃迁。发射光谱中,位于593 nm、625 nm、654 nm和701 nm的发射峰对应Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2、~5D_0→~7F_3及~5D_0→~7F_4跃迁。当Eu~(3+)掺杂量为7%,800℃煅烧8 h时,GdVO_4:Eu~(3+)红色荧光粉CIE色坐标为(0.6426,0.3530),荧光寿命为0.52 ms,是一种有望用于白光LED的高效红色荧光粉。  相似文献   

3.
采用传统高温固相法在较低温度下制备Eu~(3+)/Bi~(3+)共掺杂Ba_3YB_3O_9红色荧光粉,利用XRD仪和荧光光谱仪对样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)的晶体结构和发光性质进行了表征。XRD结果表明,Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)为纯相晶体。激发和发射光谱表明,样品可以被近紫外350~420 nm波段激发,最强激发峰位于393 nm,发射光谱呈现出Eu~(3+)的特征峰,谱带峰值位置在593 nm、613 nm,分别对应~5D_0-~7F_1、~5D_0-~7F_2特征跃迁。最强发射对应的掺杂浓度是0.12 mol。Ba_3Y_(0.87)B_3O_9∶0.12Eu~(3+),0.01Bi~(3+)的CIE坐标为(0.643,0.356)时最接近标准红色坐标,获得极佳的演色性。样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)可以用作近紫外激发三基色白光LED的红色荧光粉。  相似文献   

4.
以钼酸铵、硝酸钡和三氧化二铕为原料,通过化学沉淀法制备稀土掺杂的发红光材料BaMoO_4:Eu~(3+),并用X射线衍射和激发发射光谱对粉体的结构和发光性能进行了表征。结果表明,获得最强发光BaMoO_4:Eu~(3+)粉体的最佳合成条件是:反应溶液的pH值为6、烧结温度为1000℃以及Eu~(3+)掺杂量(mol分数)为8%。BaMoO_4:Eu~(3+)粉可被394 nm的紫外光和465 nm的可见光有效激发,其发射光谱在616 nm处发光强度最大,是以电偶极跃迁~5D_0→~7F_2为主导地位的红光发射。  相似文献   

5.
采用高温固相法合成Ca_(0.92-x-y)Sr_xBa_yWO_4∶0.08Eu~(3+)(x=0,0.1~0.4;y=0,0.1~0.3)系列红色荧光粉。对其晶体结构、表面形貌和发光性能进行表征。结果表明:样品荧光粉为体心四方白钨矿结构;Sr~(2+)、Ba~(2+)的掺杂改变了荧光粉的形貌和尺寸;样品的激发光谱由位于350~550nm的系列激发峰构成,最强激发峰位于近紫外光区的395nm处,最强发射峰位于红光区域的617nm处,对应于Eu~(3+)的~5 D_0→~7 F_2特征跃迁;Sr~(2+)、Ba~(2+)的掺杂会改变基质的晶格参数和晶体对称性,从而提高荧光粉的发射强度,Sr~(2+)、Ba~(2+)的最佳掺杂量分别为x=0.2,y=0.15。  相似文献   

6.
分别采用沉淀法和水热法成功制备了Y_2(MoO_4)_3∶Eu~(3+)红色荧光粉,使用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱对其物相结构、形貌和发光性能进行表征。结果表明:Eu~(3+)含量低于20%(摩尔分数,下同)不会改变Y_2(MoO_4)_3的晶体结构;沉淀法得到荧光粉呈花状,而水热法主要得到层层堆积结构的荧光粉;所制荧光粉的主激发峰和发射峰分别位于394和614nm,这是来自掺杂Eu~(3+)的f-f电子跃迁。Y_2(MoO_4)_3荧光粉中Eu~(3+)最佳摩尔分数为20%,当Eu~(3+)含量大于20%时,出现浓度猝灭现象,其5D_0→7F_2发光浓度猝灭机理是电偶极-电偶极相互作用。  相似文献   

7.
在使用Li_2So_4作助熔剂的条件下,由相应的氧化物高温合成了Y_(1-x)Eu_xNbO_4(0≤x≤0.30),研究了各试样的光致发光。254nm紫外光激发下的发射光谱包括两个部分:位于330~480nm的弱发射谱带,相当于NbO_4基团的电荷转移态跃迁发射;在535~720nm之间有5组锐线状发射光谱,分别归属于Eu~(3+)的~5D_1—~7F_j(j=1,2,3)和~5D_o—~7F_j(j=1,2,3,4)跃迁发射,其中主发射峰是位于612.7nm的~5D_o—~7F_2跃迁发射。~5D_o—~7F_2发射的激发光谱包括NbO_4基团电荷转移态的强激发带,和一些Eu~(3+)f—f跃迁弱激发锐线谱。随着Eu~(3+)浓度的增大,两种激发都逐渐增强,这表明光致发光过程中存在着能量由NbO_4→Eu~(3+)的传递。当Eu~(3+)浓度大于0.15mol时发生发光的浓度猝灭。  相似文献   

8.
在NH4Cl助熔剂的掺杂下,采用高温固相法制备了CaMoO_4∶Eu~(3+)红色荧光粉。用热分析仪(TGDSC)对样品的最佳合成温度进行了研究;用X射线粉末衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)和激光拉曼光谱(LRS)表征了晶体的内部结构和表面形貌;用荧光光谱仪对晶体的发光效果进行了检测。结果表明,反应物在800℃即可形成晶体,合成产物为纯净的CaMoO_4晶体,无杂相,结构稳定,颗粒呈球形,簇生,粒径约为5/7μm;激发光谱主要由一个位于200~350nm的O2-→Eu~(3+)和O2-→Mo6+电荷迁移带、395nm处的7F0→5L6跃迁和465nm处的7F0→5D2跃迁两条尖峰构成,发射光谱由位于580~720nm的系列尖峰构成,其中强度最大的发射峰位于615nm处,属于Eu~(3+)的5D0→7F2跃迁。当助熔剂的相对加入量为4%(摩尔分数)时,样品的发光效果最好,此时,Eu~(3+)的最佳含量为0.06。  相似文献   

9.
采用高温固相法合成系列Eu~(2+)掺杂的单一基质的白光荧光粉(Sr_(0.95)Mg_(0.05))_3(PO_4)_2.该荧光粉可有效被270~390nm的紫外光激发,激发波长范围与紫外LED芯片相匹配.在激发波长为350nm时,发射光谱中有两个发射峰,峰值分别位于410nm和570nm,对应于Eu~(2+)的4f65d1→4f7跃迁,是Eu~(2+)占据了基质中Sr~(2+)的十配位和六配位的两种不同的格位后,形成的两个发光中心.当Eu~(2+)的掺杂浓度为1mol%时,具有最大的发光强度,继续增加Eu~(2+)的浓度后,会出现浓度猝灭现象.通过将Eu~(2+)的掺杂浓度从0到0.01,可以使该荧光粉的CIE色坐标从(0.259 5,0.198 7)的蓝光区域逐渐移动到(0.324 5,0313 3)的白光区域.基于实验结果和理论分析计算表明,这种荧光粉是一种潜在的用近紫外光激发产生白光LED的荧光粉.  相似文献   

10.
采用传统的高温熔融淬火法制备了具有高效可见荧光发射的铕(Eu~(3+))掺杂硼酸盐荧光玻璃。测量了样品的吸收光谱、激发光谱和发射光谱。利用Judd-Ofelt理论计算样品的Judd-Ofelt参数分别为Ω_2=9.22×10~(-20)cm~2、Ω_4=5.53×10~(-20)cm~2、Ω_6=1.41×10~(-20)cm~2。并进一步计算了Eu~(3+)在荧光硼酸盐玻璃基质的自发辐射跃迁几率、振子强度、荧光分支比及荧光寿命等光谱参数。激发光谱分析表明样品的激发波长与LED芯片发射波长一致。发射光谱分析表明在394nm激发下样品发出明亮的红色光。  相似文献   

11.
采用固相法合成了新型白光LED用红色NaLa_(1-x)Eu_xMgWO_6(0≤x≤1)系列荧光粉。分别采用X射线衍射、扫描电子显微镜、发光光谱等测试手段分析了粉体样品的物相、形貌与发光性质。XRD分析结果表明:NaLaMgWO_6具有单斜晶系的复合钙钛矿结构,空间群为C2/m。光谱测试结果表明:NaLa_(1-x)Eu_xMgWO_6系列荧光粉均可被近紫外光(397 nm)和蓝光(465 nm)有效激发,其最强发射峰位于617 nm处,属于Eu~(3+)的~5D_0→~7F_2电偶极跃迁。Eu~(3+)的最佳掺杂浓度为x=0.5。对荧光粉的发光浓度猝灭曲线分析表明,在NaLaMgWO_6基质中,Eu~(3+)是通过电偶极-电偶极的多极矩相互作用的方式来实现能量传递的。采用Judd-Ofelt理论计算了基质的折射率、Eu~(3+)离子的辐射跃迁强度参数(?λ)和荧光分支(β)等辐射跃迁参数。  相似文献   

12.
采用高温固相法制备近紫外光激发的BaSr_2Si_3O_9∶Eu~(3+)发光材料,研究了Eu3+不同掺杂量对样品晶体结构、发光特性的影响规律。用X射线衍射(XRD)、荧光光谱(PL)、紫外-可见光谱分析系统对样品进行了表征和封装评价。结果表明,随着Eu~(3+)的掺入,BaSr_2Si_3O_9晶体结构并没有发生变化;激发主峰为395nm,发射主峰为611nm,随着Eu~(3+)掺杂量的增加,样品发光强度先升高后降低,在掺杂量为6%(摩尔分数)时发射强度最大;结合396nm近紫外芯片和BAM双峰蓝色荧光材料进行封装测试,所制备白光LED显色指数为88,色温5953K,因此,BaSr_2Si_3O_9∶Eu~(3+)是一种很有应用前景的近紫外激发发光材料。  相似文献   

13.
以高温固相法制备铕离子(Eu~(3+))掺杂硼酸盐红色荧光粉Sr_3La_2(BO_3)_4∶Eu~(3+),用X衍射(XRD)、扫描电镜(SEM)研究了荧光粉的结构和表面形貌,测定了其在近紫外光激发下的发光特征。研究结果表明,焙烧温度为1000℃,保温时间为5h,Eu3+摩尔掺杂分数为7.5%时,荧光粉具有较强的发光强度;以394nm的紫外光激发,荧光粉最强发射为波长618nm的红光,为Eu~(3+)的5 D0→7F2的电偶极跃迁,计算其色坐标为x=0.65,y=0.35。  相似文献   

14.
以稀土氧化物、硝酸铝和硼酸为原料,用高温球磨法制备红色荧光粉YAl_3(BO_3)_4:Eu~(3+),研究其结构、形貌和发光性能。结果表明,在700℃高温球磨制备YAl_3(BO_3)_4:Eu~(3+)荧光粉,煅烧温度比硝酸盐分解法降低200℃,比高温固相法降低500℃;制备出的荧光粉粒度分布均匀,晶粒近似呈球状,尺寸为纳米级;在394 nm的紫外光激发下YAl_3(BO_3)_4:Eu~(3+)荧光粉具有较好的发光性能,发射光以波长为618 nm的红光(Eu~(3+)离子~5D_0→~7F_2跃迁)为主;Eu~(3+)的最佳掺杂量为15%。  相似文献   

15.
采用水热法制备了铕、钐共掺杂的钼酸锶(Sr_(1-x-y)MoO_4∶xEu~(3+),ySm~(3+))系列发光材料,对样品的晶体结构、微观形貌和发光特性进行了研究。结果表明:制备的样品均具有体心四方白钨矿结构;样品的颗粒比较均一,分散性较好,颗粒粒径1~2μm;三价稀土铕离子(Eu~(3+))和钐离子(Sm~(3+))共同掺杂样品的激发光谱由位于350~500nm的系列激发峰构成,同时存在Eu~(3+)和Sm~(3+)的特征激发峰,激发主峰位于395nm和465nm,表明样品能被近紫外光和蓝光有效激发;其发射主峰位于615nm,Sm~(3+)的掺杂能对Eu~(3+)起敏化作用,增强Eu~(3+)的红光发射强度;Eu~(3+)、Sm~(3+)的最佳掺杂量分别为x=0.04,y=0.03,制得的Sr_(1-x-y)MoO_4∶xEu~(3+),ySm~(3+)发光材料的最强相对发射强度达5000(光栅狭窄缝均为5.0测试条件下),具有较好的发光性能。  相似文献   

16.
通过高温固相合成工艺制备出白光LED用BaSi_2O_5∶Eu~(3+)红色荧光粉,通过X射线衍射、荧光光谱、紫外-可见光光谱仪对材料的晶格结构、发光特性和白光LED灯珠的光谱特性进行了测试。研究结果表明,Eu~(3+)的掺入没有改变基质的晶格结构,在Eu~(3+)掺杂浓度为5.0%(mol,摩尔分数)时,荧光粉的发射强度最高,最强激发峰为395nm,最强发射峰为614nm,通过结合紫光芯片和蓝黄荧光粉制备的白光LED灯珠,相关色温为4789K,显色指数为92,因此,BaSi2O5∶Eu~(3+)红色荧光粉是一种适合于紫光芯片应用的材料。  相似文献   

17.
研究了以β-Si_3N_4为原料制备Eu~(2+)掺杂的CaSi_2O_2N_2∶Eu~(2+)荧光粉,并分析了这类荧光粉的结构特点,通过实验发现该荧光粉有很宽的激发带,可以被紫外和近可见光激发,发射出550~568nm波长的峰。Eu~(2+)与CaSi_2O_2N_2∶Eu~(2+)荧光粉的发光强度有着重要的联系。随着Eu~(2+)浓度的增加激发峰和发射峰都有一定的红移现象,当浓度超过2%时,该荧光粉的发光强度会有所下降,即出现一定的浓度猝灭现象。  相似文献   

18.
采用高温固相法制备了KBaY(MoO_4)_3∶Eu~(3+)红色荧光粉,并借助于X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光光谱以及荧光寿命等表征手段对其结构、形貌及发光性能进行了分析。XRD结果显示,KBaY(MoO_4)_3∶Eu~(3+)样品衍射图与纯相KBaY(MoO_4)_3完全一致,Y~(3+)离子可以完全被Eu~(3+)离子替代而不会使晶体结构发生改变。激发光谱显示,KBaY(MoO_4)_3∶Eu~(3+)在394nm处具有一个强激发带,因此样品可以被近紫外光有效激发。荧光光谱结果显示,在KBaY(MoO_4)_3基质中,Eu~(3+)离子的最佳掺杂浓度高达90%,证明KBaY(MoO_4)_3∶Eu~(3+)的浓度猝灭效应比较弱;样品发光强度随温度升高而下降,当温度升高到200℃时,样品发光强度约为30℃时的63%,通过对ln(I_0/I_T-1)~1/kT的关系曲线进行拟合得到KBaY(MoO_4)_3∶Eu~(3+)的激活能为0.261eV。  相似文献   

19.
采用溶胶-凝胶法制备了CaSiO_3∶Eu~(3+)荧光粉,通过对样品的X射线衍射谱及光致发光光谱的测试和表征,研究了不同Eu~(3+)和电荷补偿剂Li+浓度下,CaSiO_3∶Eu~(3+)荧光粉的物相结构和发光性能。结果显示CaSiO_3∶Eu~(3+)荧光粉发射光谱是由位于595nm和614nm处的主峰构成的双峰谱线,激发光谱为多峰宽谱,谱峰位于220~280nm范围内。Eu~(3+)含量对CaSiO_3∶Eu~(3+)发光性能有明显的影响,随Eu~(3+)浓度的增大,CaSiO_3∶Eu~(3+)的发光强度呈现先增大后减小的规律,Eu~(3+)浓度为1%(摩尔分数,下同)时,发光强度最大。电荷补偿剂Li~+可以显著提高CaSiO_3∶Eu~(3+)的发光强度,当Li~+浓度为4%时,增强效果最为显著。  相似文献   

20.
采用固相法在相对较低的温度(~840℃)下合成了一种可被紫外光激发的蓝光发射荧光粉α-Ba_(3-x)P_4O_(13)∶xEu~(2+),详细研究了其物相、发光特性与荧光热稳定性。在360nm紫外光的激发下,样品的发射光谱由峰位处于~439nm的不对称宽带组成。通过激发与发射光谱、荧光寿命测试及结构分析证实该不对称宽峰是由于Eu~(2+)在Ba_3P_4O_(13)中同时占据多个不同的格位所致。此外,Eu~(2+)在α-Ba_3P_4O_(13)中的最佳掺杂浓度约为x=0.06,其荧光猝灭机理为电偶极矩-电偶极矩相互作用。与商用绿色荧光粉(Ba,Sr)_2SiO_4∶Eu~(2+)相比,该荧光粉具有更好的热稳定性。α-Ba_3P_4O_(13)∶Eu~(2+)荧光粉有望在紫外激发的白光LED领域得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号