共查询到19条相似文献,搜索用时 62 毫秒
1.
针对现有聚合物增黏剂抗温能力不足的问题,无法满足超高温(耐240℃)水基钻井液使用要求,提出采用合成锂皂石作为水基钻井液超高温增黏剂。采用X射线粉晶衍射及热重分析对合成锂皂石进行了结构表征,对其増黏性能、抗温性及抗盐性能等进行了评价,并分析了合成锂皂石抗高温增黏机理。实验结果发现:合成锂皂石H-6具有优良的増黏性能和热稳定性,抗温能力可达240℃,而且抗高温増黏效果优于现有国内外高温增黏剂产品。在4%钠膨润土基浆中加入1% H-6,240℃高温老化16 h前后浆液的表观黏度均为16.5 mPa·s,而加有1%高温增黏剂HE300的钠土基浆经240℃老化16 h后其表观黏度降低率大于92%。研究结果表明,合成锂皂石与其它处理剂配伍性好,适合用作超高温增黏剂,在超高温水基钻井液中具有广阔的应用前景。 相似文献
2.
3.
以正辛基三乙氧基硅烷和锂皂石为原料,利用溶胶-凝胶法一步合成了油基钻井液用增黏提切剂改性锂皂石MLap-1,分别利用红外光谱、热重分析、透射电镜和表面润湿性对其单体进行表征,证明其合成成功。通过对改性锂皂石MLap-1单剂评价发现,该剂能够提高油水比为80∶20乳液的乳化效率和破乳电压,在0.3%加量下,乳液破乳电压值达到1200 V以上,使得乳液的表观黏度和动切力由12 mPa·s和0 Pa增大至23 mPa·s和10 Pa,同时能够抗200 ℃高温。以改性锂皂石MLap-1为基础构建的高密度油基钻井液在200 ℃老化后,其动切力维持在4 Pa以上,低剪切速率切力维持在3 Pa以上,破乳电压高于1000 V,滤失量低于5.0 mL,很好地维护了钻井液的悬浮稳定性,保持了良好的乳化稳定性和降滤失效果。为油基钻井液进一步钻探深井、超深井提供了技术支持。 相似文献
4.
针对当前钻井液增黏剂耐温抗盐性能较差,无法满足深部高温储层钻探要求的问题,以2-甲基-2-丙烯酰胺基丙磺酸(AMPS)、丙烯酰胺(AM)、N-乙烯基吡咯烷酮(NVP)和N,N-二甲基丙烯酰胺(DMAM)为单体,利用自由基共聚法制备了耐温抗盐聚合物增黏剂ANAD。采用正交实验法优化ANAD的合成条件,采用红外光谱仪、核磁共振波谱仪等表征ANAD的分子结构,采用热重分析仪测定ANAD分子链的热稳定性,评价了ANAD在基浆中的耐温抗盐性能,分析了ANAD的增黏机理。结果表明,在引发剂2,2'-偶氮二异丁基脒二盐酸盐(AIBI)加量0.5%、单体摩尔比n(AMPS)∶n(NVP)∶n(AM)∶n(DMAM)=37.70∶31.10∶31.10∶0.10、反应温度55℃的条件下制备的ANAD抗温性能优良,分子链初始分解温度为328℃,在淡水基浆和15%盐水基浆中的抗温能力分别为230℃和180℃。ANAD的抗剪切性能良好。ANAD具有大分子侧链、刚性基团及极性基团磺酸基团,其抗温、抗盐、增黏和抗剪切性能均优于国内常用增黏剂80A51。图10表4参20 相似文献
5.
为了实现在调控钻井液黏度的情况下获得良好的携岩能力,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)、甲基丙烯酰氧乙基-N,N-二甲基丙磺酸(DMAPS)和十六烷基疏水单体(C16-D)为原料,采用自由基聚合法,制备了一种新型的两性疏水缔合聚合物(PAADDC)。采用傅里叶变换红外光谱(FTIR)和核磁共振(1H NMR)表征了PAADDC的分子结构,采用静态光散射(SLS)测定了聚合物的分子量,并对其流变性能进行了评价。结果表明,100℃老化16 h,加量为0.2% PAADDC的钻井液的表观黏度、塑性黏度、动切力和动塑比分别为18.5 mPa·s,11.5 mPa·s,7.0 Pa和0.61 Pa/mPa·s,抗温可达160℃。与常规增黏剂相比,PAADDC具有良好的热稳定性和更佳的抑黏增切效果。在60~180℃热老化实验中,动塑比值随PAADDC用量的增加而降低。环境扫描电镜(ESEM)和原子力显微镜(AFM)的观察表明,PAADDC在溶液中形成了连续的三维网状结构,这是其剪切强度显著提高的主要原因。 相似文献
6.
为了实现在调控钻井液黏度的情况下获得良好的携岩能力,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)、甲基丙烯酰氧乙基-N,N-二甲基丙磺酸(DMAPS)和十六烷基疏水单体(C16-D)为原料,采用自由基聚合法,制备了一种新型的两性疏水缔合聚合物(PAADDC)。采用傅里叶变换红外光谱(FTIR)和核磁共振(1H NMR)表征了PAADDC的分子结构,采用静态光散射(SLS)测定了聚合物的分子量,并对其流变性能进行了评价。结果表明,100℃老化16 h,加量为0.2% PAADDC的钻井液的表观黏度、塑性黏度、动切力和动塑比分别为18.5 mPa·s,11.5 mPa·s,7.0 Pa和0.61 Pa/mPa·s,抗温可达160℃。与常规增黏剂相比,PAADDC具有良好的热稳定性和更佳的抑黏增切效果。在60~180℃热老化实验中,动塑比值随PAADDC用量的增加而降低。环境扫描电镜(ESEM)和原子力显微镜(AFM)的观察表明,PAADDC在溶液中形成了连续的三维网状结构,这是其剪切强度显著提高的主要原因。 相似文献
7.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、对苯乙烯磺酸钠(SSS)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,采用氧化还原引发剂水溶液聚合法合成了钻井液用增黏降滤失剂。通过单因素和正交实验确定了合成最优条件,并对产品的耐盐、耐温和降滤失性能进行评价。实验结果表明:在单体质量分数为37.5%、n(SSS)∶n(AMPS)∶n(AM)∶n(DMC)=1.5∶4.5∶9∶1、反应温度为45℃、引发剂用量为0.75%和pH=9条件下合成的聚合物具有较好的增黏、耐盐、耐温和降滤失性以及与其他钻井液添加剂有较好的配伍性。 相似文献
8.
9.
10.
《石油化工》2016,45(9):1087
采用乳液聚合法制备出适用于无土相油基钻井液的增黏提切剂,考察了单体配比、单体加量、引发剂加量、交联剂加量、乳化剂加量、反应温度及反应时间对产物增黏提切性能的影响;采用FTIR、纳米激光粒度分析仪及金相电子显微镜对该增黏提切剂的结构和粒径进行了表征,并对其在柴油及无土相油基钻井液体系中的性能进行了评价。优化出最佳合成条件为:单体配比n(甲基丙烯酸十六酯)∶n(苯乙烯)=5∶5,单体加量(w)为30%~35%,引发剂过硫酸钾加量(w)为0.7%~0.9%,交联剂二乙烯基苯加量(w)为0.6%~0.8%,反应温度80~85℃,反应时间6~7 h,乳化剂配比m(十二烷基苯磺酸钠)∶m(OP-10)=1∶1.5,乳化剂加量(w)为5%~6%。表征结果显示,该增黏提切剂平均粒径在96 nm左右。实验结果表明,当其加量为柴油的3%(w)以上时,基浆动塑比在0.5以上,在80~160℃内变化不大,150℃下连续老化72 h性能稳定;在149℃、55.5 MPa下,该增黏提切剂在柴油中的动塑比为0.470,在无土相油基钻井液体系中的动塑比为0.200,具有更好的悬浮稳定性能。 相似文献
11.
利用乳酸和双氧水对天然大豆卵磷脂进行了羟基化改性,改性大豆卵磷脂环保无毒,EC50大于30 000 mg/L,同时改性后大豆卵磷脂在清水、淡水基浆及水基钻井液体系中润滑性能良好。在清水中,加入改性大豆卵磷脂的极压膜强度是国产对比润滑剂PF-Lube和CX-300H的2倍以上,在30 min四球摩擦实验中,0.5%改性大豆卵磷脂摩擦系数在0.1以下,优于国外DFL润滑剂。在4%淡水基浆中,120℃老化前后,加入1%改性大豆卵磷脂淡水基浆EP极压润滑系数降低率达90%,润滑性能优于对比的DFL和PF-Lube润滑剂。在密度为2.0 g/cm3的水基环保钻井液体系中,加入1%改性大豆乱磷脂的体系120℃老化后黏度更低,高温高压滤失量降低50%左右,滤饼黏附系数和极压润滑系数均降低60%以上。最后,利用扫描电镜对极压划痕进行了分析,并利用XPS元素分析揭示了改性大豆卵磷脂润滑机理。整体而言,改性大豆卵磷脂环保无毒,并具有良好的极压润滑性能,在大位移水平井水基钻井液中具有一定应用前景。 相似文献
12.
榆林气田二开φ311.2 mm井眼属于大井眼、长裸眼井段,具有岩性多变、多套地层压力系统共存、水敏性黏土矿物含量高等特点,易出现起钻阻卡、拔活塞等复杂情况,决定使用油基钻井液,但必须解决其黏度控制问题。为此,以油酸为链终止剂,二甲苯为溶剂,以二聚酸和二乙烯三胺为原料,在230℃条件下合成了一种油基钻井液增黏剂,用红外光谱对该产品进行了表征,并对其性能进行了评价。实验结果表明:加入该增黏剂后钻井液在120℃热滚前后的表观黏度、塑性黏度值均比基浆高1倍;且加增黏剂后热滚前后的破乳电压基本保持不变。加有该剂的油基钻井液在靖平10-20、榆39-2H1、榆42-5H3和榆42-5H4井等4口水平井的二开井段进行了试验。通过现场试验发现,应用井段均未发生井壁失稳现象;泥饼光滑致密,有韧性;井径规则,井径扩大率小于5%;润滑性良好,现场滑动无托压现象。所以该体系适合四开下古水平井二开直井段大井眼施工。 相似文献
13.
“零电位”水基钻井液探讨 总被引:3,自引:0,他引:3
在应用中,分散型钻井液存在“性能稳定”和“井壁稳定”矛盾要求及钻井液的Zeta电位与所钻地层电性不匹配的问题.具有抑制性的阳离子水基钻井液能有效抑制泥页岩水化分散的问题,但出现阳离子型处理剂和阴离子型处理剂不相容的问题.从理论和试验分析了将高负Zeta电位的钠基膨润土改造成“零电位”土的途径.由正交试验结果确定,以HEC、PEO和AlCl3为膨润土电性改变剂形成的膨润土-水分散体系,可以配成符合钻井液性能要求的体系.以此为基础,不使用阴离子型处理剂,只使用阳离子型、非离子型和高价无机盐作处理剂,优选出了“零电位”水基钻井液的基本配方. 相似文献
14.
15.
选用2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、单体X为主要单体,合成出钻井液用抗高温耐盐增黏剂BDV-200S。研究了BDV-200S的分子结构、分子量及其分布、耐热性能,通过高温流变性能测试、高温老化黏度保留率性能测试、高温老化浆体悬浮重晶石实验和井底动态循环模拟实验等测试方法,表征了增黏剂BDV-200S的抗温性能及热稳定性能,并考察了120℃、150℃、180℃等不同温度下其与同类产品在无固相钻井液中的应用性能。结果表明,BDV-200S为目标聚合物;重均分子量近200万且分布集中;抗温能力良好,180℃高温老化16 h后黏度保留率大于45%,且浆体颜色仍呈乳白色,无大量重晶石沉淀,高温悬浮能力较好;经过180℃井下4个循环周模拟实验后黏度保留率大于50%;抗盐性能较好,随着盐含量增加至饱和,增黏剂在盐水中的黏度保留率保持为25%;在中高温及高温无固相钻井液体系中应用良好,经180℃老化后黏切性能保持率较高,常温中压滤失量为5.0 mL,150℃高温高压滤失量为19 mL,性能优于国内外同类产品。 相似文献
16.
北部湾地区地质条件复杂,钻井难度大,结合北部湾地区钻探的实际情况,通过对影响水基钻井液重复利用因素的分析,对废弃钻井液的粒度分析和性能检测制定了一套成熟的固相控制技术。通过检测废弃钻井液中固相颗粒粒径分布,优化固控设备的搭配和参数配置(尤其是振动筛筛布选择),选择离心机分离能力、布局和台数等,从而提高固相控制效率,达到有效净化废弃钻井液的目的;制定了一套合适的废弃钻井液处理方式:先检测回收的废弃钻井液性能,然后通过固控设备来净化废弃钻井液,合理配制新浆量进行稀释处理废弃钻井液,使钻井液性能满足下一口井或井段的开钻要求,节省了材料成本、人工成本和运输成本。北部湾水基钻井液固相控制与重复利用技术在北部湾地区29口开发井进行了成功应用。 相似文献
17.
在自制新型烯类聚合单体的基础上,合成出一种新型配套的、抗Ca Cl2至饱和的强抗钙聚合物,初步形成了2种Ca Cl2/聚合物水基钻井液的基本配方:水+1.5%(3.0%)凹凸棒石+0.3%(0.2%)XC+5%KCl+40%(60%)无水Ca Cl2+2%强抗钙聚合物,强抗钙聚合物与Ca Cl2能形成良好的协同效应,是体系的核心。综合性能评价结果表明,Ca Cl2/聚合物钻井液的抑制性能和润滑性能尤为突出,在120℃滚动老化16 h后,一次、二次回收率均为100%,抑制能力超强;体系的黏附系数为0.001 69,润滑系数最低为0.038,达到油基钻井液水平;强抗钙聚合物对凹凸棒石具有较强的吸附和分散能力,可以形成薄而致密的滤饼,显著提高体系降滤失能力;可以用聚合醇或聚电解质作封堵剂;含60%Ca Cl2的配方抗温达120℃。可以得出,该体系具有满足复杂地层钻井要求的潜力,与油基钻井液性能相仿,并且成本低,无污染,满足排放标准,维护简单,具有良好的应用前景。 相似文献
18.
钻井液体系正电化、纳米化、方便化是钻井液技术的发展趋势之一。聚合物/层状粘土纳米复合材料的制备是目前国内外纳米材料研究领域中的重点之一,并已经取得了重要突破。通过研究认为,纳米水基钻井液配浆剂,怍为聚合物/层状粘土纳米复合材料,已经有原位聚合法、溶液插层法和熔体插层法比较成型的方法可供借用。结合纳米水基钻井液配浆剂的具体特点,认为以熔体插层法为基本内容的挤压成型法,简单易行,综合成本较低,可在常规的挤出机等加工设备上直接进行,是目前制备插层型聚合物/粘土纳米复合材料的主要方法,熔体插层法不需要任何溶剂、工艺简单,易于工业化应用,对环境优化。对于纳米水基钻井液配浆剂性能的表征,X射线衍射法、TEM法和Malvern激光测粒仪法是最常见的方法。 相似文献
19.
针对塔里木油田深井、超深井上部地层泥页岩水化膨胀阻卡,下部地层温度高,常规水基钻井液性能调控、维护困难等问题,通过优选阳离子抑制剂CPI、阳离子包被剂CPH-1和CPH-2、阳离子降滤失剂CPF-1和CPF、阳离子封堵剂CPA等,形成了一套"零电位"水基钻井液体系。该体系阳离子浓度可达8 000 mg/L,其黏土颗粒的Zeta电位可达-10 m V左右,稍高于原地层条件下岩屑颗粒的Zeta电位,从而阻止电荷迁移,稳定井壁;在1.0~2.3g/cm3密度范围内,在80~180℃下,在很少处理剂加量下,体系均表现出良好的流变性和降失水能力;能抗20%盐、2%钙和5%黏土污染。该钻井液在塔里木油田已应用20余井,由钻井液引起的事故与复杂损失时间相比于传统水基钻井液减少10.2%,机械钻速提高14.9%,钻井周期缩短9.8%,为深井安全、快速、高效钻井提供了新的钻井液体系。 相似文献