首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Tod=-10℃工况下调节压缩机工作频率及补气压力,实验研究R410A单缸滚动转子式压缩机系统的制热性能。试验测试系统采用双电子膨胀阀控制中间补气压力及压缩机吸气过热度。实验研究表明:随着补气压力的增加,中间补气系统的制热量逐渐增大,COPh呈现出先增加而后降低的趋势;而随着频率的增加,系统的制热量升高,系统COPh降低。相对于普通单级压缩系统,中间补气系统的制热量平均增长约26.1%,系统COPh在低频时最大提升幅度约为7.92%,在高频时其能效比相对较低。随着补气压力的增加,闪蒸器气液分离效率降低,部分液态冷媒经中间补气管道进入压缩机,中间补气系统性能降低且易产生湿压缩。因此在满足建筑物热负荷需求的同时,应合理控制中间补气压力及补气量。  相似文献   

2.
利用中间补气技术将单缸滚动转子式压缩机应用于空气源热泵系统中,系统地研究以R410A为冷媒的热泵系统在变频、变补气压力工况下制热性能的变化规律。实验结果表明:中间补气系统的制热量及系统功率均随着压缩机频率f、中间补气压力pinj的增加呈上升趋势,同频率下系统功率则以线性方式增长,而系统制热量随着补气压力及频率的增大,其相对增长率逐渐减小。因此COPh在低频时存在最佳补气压力,而在高频时无极值点;与单级压缩系统相比,在800~1200 kPa、50~80 Hz范围内,中间补气系统的制热量、功率、COPh最大提升分别为27.55%、30.75%、7.1%。随着频率及补气压力的增加,系统COPh下降,因此中间补气技术应与合理的控制策略相结合,可使中间补气系统达到节能高效的目的。  相似文献   

3.
搭建一套跨临界CO2空气源热泵系统,研究在不同压缩机运行频率以及排气压力下循环系统的热力性能,通过实验对比分析频率和排气压力对吸气压力、等熵效率、压缩机功耗、排气温度、CO2质量流量、系统制热量以及制热性能系数COP的影响。结果表明:排气压力不变时,只有吸气压力随着频率的上升而下降,排气温度、CO2质量流量、系统制热量和压缩机功耗都随之增加。系统COP随着排气压力的增加先上升再下降,随着压缩机频率升高,系统COP减小,最优排气压力升高,在最优排气压力下,系统的COP达到峰值。当压缩机运行频率为80 Hz,排气压力为8.4MPa时,此时最优等熵效率约为0.9,系统COP达到峰值为3.64。  相似文献   

4.
根据电动汽车热泵在低温下的制热需求并延长车辆行驶里程,开发了车外换热器支路和余热换热器支路并联的余热回收系统并进行了制热性能试验研究。试验结果显示,对于并联余热回收支路的喷射补气式热泵系统,补气支路压力和补气流量均随着余热量的增加而有明显的提升,而吸气主路流量受余热换热器出口过热度的影响。车外换热器支路和余热换热器支路的流量比也呈线性关系,流量比斜率与余热换热器出口相态有关。并联余热回收喷射补气热泵系统的制热性能随余热量的变化受压缩机吸气量和补气量这两个因素的共同影响。在7℃相对较高的环境工况下,余热量的增加有利于制热量的提升但COP没有优势;在-20℃较低的环境工况下,余热量的增加使得补气流量增长较大,但吸气流量衰减严重,对系统的制热性能提升不明显;在-10~0℃的环境工况下,制热量和COP都随余热量的增加而提升较大,-10℃时,1.8 kW余热量条件下的制热量比0.9 kW余热量条件下的制热量增加了11.6%,COP提升9.18%。  相似文献   

5.
为探究电动汽车用短型线涡旋压缩机在不同工况下的补气特性及制热COP与补气系数k之间的联系,采用第二制冷剂量热器法进行实验研究。结果表明:补气主要对总质量流量的增量和压缩机功率的增量有影响,两者增长的强弱共同决定了该压缩机性能的变化趋势;蒸发温度越低则补气效果越明显,蒸发温度为-22℃时制热量可提高15.9%;排气温度随补气压力的增大先降低后逐渐升高,在补气压力较低时,压缩机效率可以得到一定的提升;蒸发温度在-22—-1℃的范围内,制热COP随补气系数k呈先增后降的趋势,并且制热COP在补气系数k为0.65—0.85的范围内最优。  相似文献   

6.
开发了带闪发器的中间补气型热泵系统的稳态仿真模型。在模型中,通过建立基于理论的显式表达式,开发了补气压缩机性能计算模型;采用分相区计算方法,建立了能够反映相区特点的换热器性能计算模型;并开发了基于顺序模块的系统迭代算法对各部件模型进行求解。验证表明,压缩机模型对于流量和功率的计算误差分别小于±7%和±5%;换热器模型对于换热量和压降的计算误差分别小于±3%和±4%。与传统热泵系统相比,在室外温度为−20℃的低温工况下,带闪发器的中间补气型热泵系统制热量提升18.9 %。  相似文献   

7.
提出了一种基于高温超临界喷气增焓技术的新型CO2热泵循环,以显著提升跨临界CO2热泵在高温循环加热工况下的制热性能。通过建立超临界喷气增焓型高温CO2热泵系统的数值模型,并采用EES(engineering equation solver)软件对该热泵系统的循环加热性能进行了仿真分析。研究了在较高气体冷却器出口温度下,蒸发温度、压缩机中间压力、气体冷却器压力等参数对单位容积制热量和性能系数(COP)的影响。结果表明:在最优排气压力下,气体冷却器出口温度高达60℃时,该热泵循环的COP也能达到3.0左右;相对于普通喷气增焓系统,COP明显提高;相对于无喷气增焓的常规系统,在气体冷却器出口温度为60℃时,相对补气量为0.3、0.4、0.5的超临界喷气增焓系统COP分别提高了14.8%、21.2%、29.2%;气体冷却器压力和中间压力对系统COP的影响变化趋势一致,但气体冷却器压力的影响更为显著;此外,存在最优的气体冷却器压力和中间压力使系统COP达到最大,在气体冷却器出口温度为60℃,相对补气量为0.4时,最优气体冷却器压力和中间压力分别为13.5MPa和8.5MPa。  相似文献   

8.
许树学  马国远 《化工机械》2009,36(6):588-592
将喷射器用于涡旋压缩机补气的热泵系统中。用实验数据拟合出了补气工况下压缩机指示效率,建立喷射器补气热泵系统的热力学分析模型,对其运行性能进行了分析。结果表明,相对于普通补气系统,喷射器补气热泵系统不降低系统的制热量,制热能效比可提高3%-5%;喷射器补气热泵系统的适宜补气压力为0.85-1.0MPa。  相似文献   

9.
变工况双级压缩中间压力及其对系统性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于质量与能量守恒方程,以转子压缩机几何模型为基础,建立反映中间压力形成过程的变容量双级压缩系统压缩机动态耦合模型,并利用实验对模型进行了校核。基于模拟和实验结果,分析了中间压力随时间的变化及其变工况特性。结果表明,中间压力具有脉动特性,但脉动幅值相对于时均值较小;在影响中间压力的因素中,低高压压缩机理论输气量比的影响最为显著,冷凝温度的影响明显小于蒸发温度的影响;系统制热量随中间压力的升高近似呈线性增加,而系统制热COP随中间压力升高具有先升高后降低的趋势,且存在最优值。  相似文献   

10.
空气源热泵系统低温适用性问题一直是其在北方拓广应用的制约性因素,带有闪发器的补气增焓空气源热泵系统是解决空气源热泵低温适用性的有效手段之一。本文建立了带有闪发器的补气增焓空气源热泵系统的热力学过程数学模型,通过数值模拟研究了一级压缩比和压力损失系数对补气增焓空气源热泵系统特性的影响。结果表明,随着一级压比的逐渐增大,冷凝压力降低趋势平缓,热泵的性能系数逐渐升高,而排气温度先降低后升高,因而存在最佳一级压比。综合压缩机的排气温度和热泵的性能系数,模拟工况补气增焓空气源热泵的最佳一级压比为1.6。补气压力损失系数越大意味着有用功的损失越小,随着补气压力损失系数增大热泵的制热量、耗功逐渐增大,性能系数逐渐升高而排气温度逐渐降低,因此设计时应补气压力损失系数越大越好。  相似文献   

11.
针对家用“煤改电”空气源热泵,提出采用毛细管作为节流元件替代热力膨胀阀或电子膨胀阀,搭建了热泵系统实验装置。研究压缩机不同频率下,不同的毛细管长度对压缩机吸气压力、排气温度和机组制热量等制热性能的影响。实验结果表明,毛细管替代热力膨胀阀或电子膨胀阀后,系统能够长时间稳定运行;毛细管长度为500 mm、压缩机频率为35 Hz时系统制热性能最优,制热量、制热COP获得最大值,而其吸气压力和排气温度适中。  相似文献   

12.
为提高变流量水源热泵系统在实际应用过程中的运行性能,分别进行恒定压缩机频率变膨胀阀开度和恒定阀开度变频率实验,提出一种频率-阀开度联合调控的策略并进行协同控制实验,研究该策略对于水源热泵系统性能的影响,并与仅使用电子膨胀阀或压缩机频率调控进行对比。结果显示:较低频率下电子膨胀阀的调节区间减小,适当增加冷冻水温度可以扩大其调控范围,最高制热量和最优性能系数COP对应的阀开度相同;频率为45—55 Hz时,调控区间较小,改变冷冻水进水温度对频率的调节特性影响不大,制热量随着频率的升高而升高,COP随着频率的升高而降低,可根据用户的不同需求选择较优的频率值;频率-阀开度的联合调控策略使系统在2个工况下的最高COP比仅使用阀开度调节提高了10%和9.9%,比使用频率调节提高了6.5%和7.6%。  相似文献   

13.
为研究不凝性气体对热泵系统性能的影响,以氮气作为实验气体,测试热泵系统在不同冷却水流量和温度下以及不同压缩机排气压力下,系统中存在体积分数为0.5%—10%的氮气时,系统的压缩机耗功、制热量以及COP的变化。结果表明:体积分数仅0.5%的氮气,对系统性能就造成了严重影响;氮气体积分数为0.5%—3%时,系统性能下降速度最快;进一步增大氮气体积分数,发现压缩机耗功增幅变缓,但制热量和COP仍有较大的下降速率。在含氮气的系统中调节冷却水流量、温度以及压缩机排气压力,系统性能虽有所改善,但大多会低于纯制冷剂系统。  相似文献   

14.
邹臣堡  冉小鹏  翟晓强  骆琼 《化工学报》2018,69(Z2):109-115
以自行开发的一台补气增焓空气源热泵机组为实验对象,通过分步运行法对机组噪声源进行识别和频谱分析,研究变工况下机组供热性能及噪声变化规律,通过对噪声特性和变化规律原因的探究,为针对性地降低机组噪声提供了方向。结果表明:风机旋转噪声频率和压缩机激励频率接近时,噪声声压级会放大;风机在部分负荷工况下从高转速切换到低转速,噪声下降了6.44 dB;补气提高了补气压力和吸气压力,导致管路噪声增大,−12℃环境温度下噪声较补气阀关闭时增加了1.05 dB;主路阀开度100%时噪声声压级较开度30%时增加了2.1 dB,主路膨胀阀开度对噪声的影响大于补气膨胀阀。  相似文献   

15.
为了研究排气压力和高低压容积比对跨临界CO2单机双级热泵热水器制热性能的影响,在不同工况条件下构建考虑压缩机输气系数的中间压力理论计算式并结合实验,以制取50℃热水为前提,分析蒸发温度在-20—0℃、排气压力在7.9—9.2 MPa、高低压容积比在1.0—2.8的范围内,二者对其性能的影响规律。结果表明:随着高低压容积比的增大,中间压力和制热量会不断增大,而制热性能系数缓慢减小;随着排气压力的升高,中间压力随之增大,制热量先迅速增长后趋于缓慢,制热性能系数先增大后降低,存在最优值3.41,且对应的最优排气压力会随着蒸发温度的升高而增大。此结果为合理地选择CO2单机双级热泵系统高低压容积比及控制排压从而提升其性能提供了指导依据。  相似文献   

16.
为回收利用普通准二级压缩热泵系统中补气回路的有用能,提出了准二级压缩-喷射热泵系统。文中对其设计方法进行了介绍,搭建了蒸发温度-20℃样机实验台。测试结果表明,在保证制热量的情况下,能效比较普通补气系统增加3%—5%,设计方法能为其他工质、其他容量的涡旋压缩机准二级压缩-喷射复合热泵系统的设计提供参考。  相似文献   

17.
在低温工况下,因跨临界循环CO2热泵系统气体冷却器的进水温度和CO2出口温度降低,压缩机吸气压力和温度随之降低。当系统的吸气压力低于压缩机的吸气压力下限时,将导致系统无法稳定运行。为了改变这种现象,采用在气体冷却器冷水入口处混水的方法,将热水箱的热水旁通至气体冷却器冷水入口。采用三通调节阀调节混水比例,适当提高气体冷却器的进水温度,以期实现系统在低温工况下的稳定运行。实验测试结果表明,采用混水方法不仅可保证低温工况下跨临界循环CO2空气源热泵热水系统的稳定运行,同时可降低结霜频率,延长系统运行时间,但系统的制热量和COP将小幅下降。兼顾系统的热力性能及运行稳定性,当环境温度为-20℃、制热温度为60℃时,较为适宜的混水温度为12~18℃。  相似文献   

18.
在低温工况下,因跨临界循环CO_2热泵系统气体冷却器的进水温度和CO_2出口温度降低,压缩机吸气压力和温度随之降低。当系统的吸气压力低于压缩机的吸气压力下限时,将导致系统无法稳定运行。为了改变这种现象,采用在气体冷却器冷水入口处混水的方法,将热水箱的热水旁通至气体冷却器冷水入口。采用三通调节阀调节混水比例,适当提高气体冷却器的进水温度,以期实现系统在低温工况下的稳定运行。实验测试结果表明,采用混水方法不仅可保证低温工况下跨临界循环CO_2空气源热泵热水系统的稳定运行,同时可降低结霜频率,延长系统运行时间,但系统的制热量和COP将小幅下降。兼顾系统的热力性能及运行稳定性,当环境温度为-20℃、制热温度为60℃时,较为适宜的混水温度为12~18℃。  相似文献   

19.
采用CO2跨临界循环水-水热泵技术,测试了CO2跨临界循环冷热联供机组的性能特点。通过调节压缩机频率、电子膨胀阀开度、蒸发器侧乙二醇水溶液进口温度与气冷器侧进水温度等方式,测试该机组在以制热为主要目标时最优排气压力的变化,以及不同参数对制热量、制冷量、制热COPh与系统综合能效COP(制热COPh与制冷COPc之和)的影响规律。研究结果表明:在额定工况下,压缩机频率从80 Hz增加到120 Hz时,系统最大制热COPh从3.9降到3.3;当乙二醇水溶液进口温度升高、气冷器进口水温降低时,系统的制热COPh以及系统综合能效COP都随之升高。机组同时供冷供热可明显提高系统综合能效,经济性好且节能效果显著。文中的研究成果对于屠宰、酿造等同时具有冷热需求的行业推广应用CO2冷热联供机组具有参考价值。  相似文献   

20.
为提高CO2跨临界热泵采暖系统的性能,提出了双级压缩双气冷器中间补气回热系统。结合其他3种CO2热泵系统和R134a单级压缩回热系统,通过建立热力学模型,分析各因素对系统能效的影响。此外,通过构建综合考虑初始投资成本和年运行成本的经济性评价模型,结合典型年气象参数,研究不同城市中各系统在运行周期内的总投资情况。结果表明,CO2热泵系统中,双级压缩双气冷器中间补气回热系统最优COPh最高且可以超过R134a单级压缩回热系统,在环境温度为0℃、出水/回水温度为65℃/40℃时,理论性能系数(COPh)可达2.58,比R134a系统高9.1%,比CO2单级压缩系统高22.5%,且排气温度不超过现有压缩机排气温度极限,是能效最优系统。在选定样本城市中,热泵系统运行周期内的总投资成本在上海最低,而在沈阳最高,可见总投资成本受气候区域影响较大。由于CO2压缩机成本过高,CO2热泵系统的总投资成本高于R134a系统。随着CO2热泵技术的提高和生产规模的扩大,当压缩机成本降低80%,CO2双级压缩双气冷器中间补气回热系统的总投资成本将低于R134a系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号