首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统的高温固相反应法在较低温度下制备红色荧光体Eu~(3+)掺杂的Ca_2SiO3_Cl_2,研究了Ca_(2-x)SiO_3Cl_2∶xEu~(3+)(x=3%~18%)的晶体结构和发光性质。激发和发射光谱表明,样品可以被近紫外350~420nm波段激发,最强激发峰位置位于394nm,发射光谱呈现出Eu~(3+)的特征红色发光,谱带峰值位置在592nm和620nm,分别对应于~(5 )D_0→~7F_1和~(5 )D_0→~7F_2特征跃迁。结果表明:最强发射对应的掺杂浓度是15%(摩尔分数),样品Ca_(1.85)SiO_3Cl_2∶0.15Eu~(3+)荧光粉是一种具有应用潜力的近紫外激发三基色白光LED用红色荧光粉。  相似文献   

2.
欧阳艳  张晓蓉  王静  王茜  何晓燕 《材料导报》2016,30(10):33-37, 56
采用微波法合成了四方晶系的CaWO4∶Eu~(3+)红色荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)等分析手段对样品的结构、形貌以及发光性能进行了表征。研究了结构控制剂种类、PEG添加量、Eu~(3+)掺杂浓度、设置温度、反应物浓度等对合成CaWO4∶Eu~(3+)发光材料的发光性能以及形貌的影响。实验结果表明,所合成四方晶系的CaWO4∶Eu~(3+)红色荧光粉在393nm紫外激发下的发射主峰位置在614nm处。当反应条件分别为PEG添加量为1.00g、Eu~(3+)掺杂浓度20%、设置温度为120℃、反应物浓度为0.06mol/L时样品具有最强的发光强度。在紫外灯照射下,样品呈现出明亮的红色。  相似文献   

3.
采用传统高温固相法在较低温度下制备Eu~(3+)/Bi~(3+)共掺杂Ba_3YB_3O_9红色荧光粉,利用XRD仪和荧光光谱仪对样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)的晶体结构和发光性质进行了表征。XRD结果表明,Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)为纯相晶体。激发和发射光谱表明,样品可以被近紫外350~420 nm波段激发,最强激发峰位于393 nm,发射光谱呈现出Eu~(3+)的特征峰,谱带峰值位置在593 nm、613 nm,分别对应~5D_0-~7F_1、~5D_0-~7F_2特征跃迁。最强发射对应的掺杂浓度是0.12 mol。Ba_3Y_(0.87)B_3O_9∶0.12Eu~(3+),0.01Bi~(3+)的CIE坐标为(0.643,0.356)时最接近标准红色坐标,获得极佳的演色性。样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)可以用作近紫外激发三基色白光LED的红色荧光粉。  相似文献   

4.
采用高温固相法制备了两种新型的红色荧光粉KMGd_(1-x)(MoO_4)_3∶xEu~(3+)(M=Ca、Sr),并研究了它们的结构、形貌、浓度与温度猝灭效应及封装后LED灯珠的发光特性。结果表明,KCaGd_(1-x)(MoO_4)_3∶xEu~(3+)始终保持四方白钨矿结构,而KSrGd_(1-x)(MoO_4)_3∶xEu~(3+)的晶体结构则随会着Eu~(3+)离子掺杂浓度的增大而发生变化。两种荧光粉在394与465 nm处均具有较强的吸收,刚好与商用InGaN半导体芯片发射波长相匹配。在394 nm激发下,两种荧光粉的主发射峰均位于616 nm处,Eu~(3+)离子的最佳掺杂浓度分别为80%(M=Ca)和90%(M=Sr)。基于横向穿越机制分析了荧光粉的热猝灭效应,热激活能分别为0.246 eV(M=Ca)和0.250 eV(M=Sr)。两种荧光粉的荧光衰减曲线均呈单指数变化,且荧光寿命受Eu~(3+)浓度影响很小。  相似文献   

5.
用共沉淀法制备了适合于近紫外激发的红色荧光粉掺铕钨酸锌锶[SrZn(WO_4)_2∶Eu~(3+)],通过X射线衍射、荧光光谱对样品的结构及发光性能进行了表征。XRD分析表明样品的主衍射峰与标准卡片(JCPDS 08-0490和JCPDS15-0774)的衍射峰基本一致,说明掺杂Eu~(3+)未改变基质晶格结构。在样品的激发光谱中,394nm为主激发峰,属于Eu~(3+)的f-f跃迁吸收。在波长为394nm的紫外激发下,样品发射主峰位于616nm,归属于Eu~(3+)的~5D_0→~7F_2跃迁。当Eu~(3+)掺量为7%(mol,摩尔分数)时,样品的发光强度达到最大。  相似文献   

6.
采用高温固相法制备了GdVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和光致发光光谱(PL)对样品的物相、形貌及发光性能进行了表征。结果表明:所合成的GdVO_4:Eu~(3+)红色荧光粉为四方晶系,表面为类球形。激发光谱中,位于382 nm、395 nm、418 nm和466 nm的激发峰分别归属于~7F_0→~5L_7、~7F_0→~5L_6、~7F_0→~5D_3及~7F_0→~5D_2跃迁。发射光谱中,位于593 nm、625 nm、654 nm和701 nm的发射峰对应Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2、~5D_0→~7F_3及~5D_0→~7F_4跃迁。当Eu~(3+)掺杂量为7%,800℃煅烧8 h时,GdVO_4:Eu~(3+)红色荧光粉CIE色坐标为(0.6426,0.3530),荧光寿命为0.52 ms,是一种有望用于白光LED的高效红色荧光粉。  相似文献   

7.
采用水热法合成SrMoO_4:Pr~(3+)红色荧光粉,使用X射线衍射(XRD)、场发射环境扫描电镜(FSEM)以及荧光光谱(PL)等手段研究了荧光粉的晶体结构、表观形貌及发光性能。结果表明,SrMoO_4:Pr~(3+)荧光粉为类球形的纯相结构,激发峰为450 nm、473 nm和485 nm,发射峰为606 nm、625 nm和650 nm,在650 nm呈现良好的红光发射,可与蓝光LED芯片匹配。SrMoO_4:Pr~(3+)的发光强度随着Pr~(3+)掺杂量的增大而增强,掺杂量x=0.02时发光强度最强,继续增大Pr~(3+)掺杂量出现浓度猝灭现象。Pr离子的掺入没有改变荧光粉的主晶相,在450 nm激发下样品产生红光发射,其中对应Pr~(3+)的特征跃迁3P_0→3F_2位于650 nm的发射峰最强。SrMoO_4:Pr~(3+)红色荧光粉可被蓝光LED激发产生红光,是一种性能优异的YAG:Ce~(3+)黄色荧光粉的红光补偿粉。  相似文献   

8.
采用高温固相法制备近紫外光激发的BaSr_2Si_3O_9∶Eu~(3+)发光材料,研究了Eu3+不同掺杂量对样品晶体结构、发光特性的影响规律。用X射线衍射(XRD)、荧光光谱(PL)、紫外-可见光谱分析系统对样品进行了表征和封装评价。结果表明,随着Eu~(3+)的掺入,BaSr_2Si_3O_9晶体结构并没有发生变化;激发主峰为395nm,发射主峰为611nm,随着Eu~(3+)掺杂量的增加,样品发光强度先升高后降低,在掺杂量为6%(摩尔分数)时发射强度最大;结合396nm近紫外芯片和BAM双峰蓝色荧光材料进行封装测试,所制备白光LED显色指数为88,色温5953K,因此,BaSr_2Si_3O_9∶Eu~(3+)是一种很有应用前景的近紫外激发发光材料。  相似文献   

9.
采用高温固相法合成Ca_(0.92-x-y)Sr_xBa_yWO_4∶0.08Eu~(3+)(x=0,0.1~0.4;y=0,0.1~0.3)系列红色荧光粉。对其晶体结构、表面形貌和发光性能进行表征。结果表明:样品荧光粉为体心四方白钨矿结构;Sr~(2+)、Ba~(2+)的掺杂改变了荧光粉的形貌和尺寸;样品的激发光谱由位于350~550nm的系列激发峰构成,最强激发峰位于近紫外光区的395nm处,最强发射峰位于红光区域的617nm处,对应于Eu~(3+)的~5 D_0→~7 F_2特征跃迁;Sr~(2+)、Ba~(2+)的掺杂会改变基质的晶格参数和晶体对称性,从而提高荧光粉的发射强度,Sr~(2+)、Ba~(2+)的最佳掺杂量分别为x=0.2,y=0.15。  相似文献   

10.
采用高温固相法合成系列Eu~(2+)掺杂的单一基质的白光荧光粉(Sr_(0.95)Mg_(0.05))_3(PO_4)_2.该荧光粉可有效被270~390nm的紫外光激发,激发波长范围与紫外LED芯片相匹配.在激发波长为350nm时,发射光谱中有两个发射峰,峰值分别位于410nm和570nm,对应于Eu~(2+)的4f65d1→4f7跃迁,是Eu~(2+)占据了基质中Sr~(2+)的十配位和六配位的两种不同的格位后,形成的两个发光中心.当Eu~(2+)的掺杂浓度为1mol%时,具有最大的发光强度,继续增加Eu~(2+)的浓度后,会出现浓度猝灭现象.通过将Eu~(2+)的掺杂浓度从0到0.01,可以使该荧光粉的CIE色坐标从(0.259 5,0.198 7)的蓝光区域逐渐移动到(0.324 5,0313 3)的白光区域.基于实验结果和理论分析计算表明,这种荧光粉是一种潜在的用近紫外光激发产生白光LED的荧光粉.  相似文献   

11.
采用固相法合成了新型白光LED用红色NaLa_(1-x)Eu_xMgWO_6(0≤x≤1)系列荧光粉。分别采用X射线衍射、扫描电子显微镜、发光光谱等测试手段分析了粉体样品的物相、形貌与发光性质。XRD分析结果表明:NaLaMgWO_6具有单斜晶系的复合钙钛矿结构,空间群为C2/m。光谱测试结果表明:NaLa_(1-x)Eu_xMgWO_6系列荧光粉均可被近紫外光(397 nm)和蓝光(465 nm)有效激发,其最强发射峰位于617 nm处,属于Eu~(3+)的~5D_0→~7F_2电偶极跃迁。Eu~(3+)的最佳掺杂浓度为x=0.5。对荧光粉的发光浓度猝灭曲线分析表明,在NaLaMgWO_6基质中,Eu~(3+)是通过电偶极-电偶极的多极矩相互作用的方式来实现能量传递的。采用Judd-Ofelt理论计算了基质的折射率、Eu~(3+)离子的辐射跃迁强度参数(?λ)和荧光分支(β)等辐射跃迁参数。  相似文献   

12.
研究了以β-Si_3N_4为原料制备Eu~(2+)掺杂的CaSi_2O_2N_2∶Eu~(2+)荧光粉,并分析了这类荧光粉的结构特点,通过实验发现该荧光粉有很宽的激发带,可以被紫外和近可见光激发,发射出550~568nm波长的峰。Eu~(2+)与CaSi_2O_2N_2∶Eu~(2+)荧光粉的发光强度有着重要的联系。随着Eu~(2+)浓度的增加激发峰和发射峰都有一定的红移现象,当浓度超过2%时,该荧光粉的发光强度会有所下降,即出现一定的浓度猝灭现象。  相似文献   

13.
采用溶胶-凝胶法制备了CaSiO_3∶Eu~(3+)荧光粉,通过对样品的X射线衍射谱及光致发光光谱的测试和表征,研究了不同Eu~(3+)和电荷补偿剂Li+浓度下,CaSiO_3∶Eu~(3+)荧光粉的物相结构和发光性能。结果显示CaSiO_3∶Eu~(3+)荧光粉发射光谱是由位于595nm和614nm处的主峰构成的双峰谱线,激发光谱为多峰宽谱,谱峰位于220~280nm范围内。Eu~(3+)含量对CaSiO_3∶Eu~(3+)发光性能有明显的影响,随Eu~(3+)浓度的增大,CaSiO_3∶Eu~(3+)的发光强度呈现先增大后减小的规律,Eu~(3+)浓度为1%(摩尔分数,下同)时,发光强度最大。电荷补偿剂Li~+可以显著提高CaSiO_3∶Eu~(3+)的发光强度,当Li~+浓度为4%时,增强效果最为显著。  相似文献   

14.
采用固相法在相对较低的温度(~840℃)下合成了一种可被紫外光激发的蓝光发射荧光粉α-Ba_(3-x)P_4O_(13)∶xEu~(2+),详细研究了其物相、发光特性与荧光热稳定性。在360nm紫外光的激发下,样品的发射光谱由峰位处于~439nm的不对称宽带组成。通过激发与发射光谱、荧光寿命测试及结构分析证实该不对称宽峰是由于Eu~(2+)在Ba_3P_4O_(13)中同时占据多个不同的格位所致。此外,Eu~(2+)在α-Ba_3P_4O_(13)中的最佳掺杂浓度约为x=0.06,其荧光猝灭机理为电偶极矩-电偶极矩相互作用。与商用绿色荧光粉(Ba,Sr)_2SiO_4∶Eu~(2+)相比,该荧光粉具有更好的热稳定性。α-Ba_3P_4O_(13)∶Eu~(2+)荧光粉有望在紫外激发的白光LED领域得到应用。  相似文献   

15.
采用高温固相法在1 800~1 950℃/0.9 MPa N2条件下合成了不同z值的Si6-zAlzOzN8-z∶Eu~(2+)(0z≤4.2)(即β-sialon∶Eu~(2+))绿色荧光粉。随着z的增加,荧光粉的发光光谱发生红移,荧光强度增强;但当z值较大时,Eu~(2+)更容易进入杂质相,从而导致其荧光强度开始下降。此外,原料对发光影响较大。使用自制硅铕合金粉和高纯微米级硅粉氮化而得的氮化硅,比使用Eu2O3作为铕源或商业Si3N4合成的荧光强度更高,同时发射峰位蓝移。在450nm激发下,β-sialon∶Eu~(2+)的吸收率和外量子效率最高分别可达70.1%和49.0%。采用蓝光芯片,使用β-sialon∶Eu~(2+)(z=0.1)搭配红色KSF∶Mn4+进行封装,在120mA驱动电流下,获得了色温为6 504K、光通量为41.63lm、光效为112.47lm/W、理论色域为95.40%NTSC的白光LED(WLED)。这些结果都表明β-sialon∶Eu~(2+)绿色荧光粉在高色域白光LED中具有优势明显的潜力。  相似文献   

16.
使用荧光粉和硅胶制备荧光膜,然后与455 nm蓝光芯片模组组装成高功率的白光LED器件。采用吸收光谱、荧光光谱和电致发射光谱等对荧光膜和器件进行表征,研究了红色荧光粉与黄色荧光粉的比例对器件性能的影响。结果表明:所制备的荧光膜表面平整、荧光粉分散均匀。Y_3Al_5O_(12):Ce~(3+)(YAG)荧光膜的吸收光谱峰分别位于337 nm和450 nm左右,与YAG荧光粉中Ce~(3+)的f-d跃迁吸收对应,且当荧光膜厚度为1.00 mm时制备出的功率为2.8 W左右的LED模组光色参数较好。将不同比例红色荧光粉和黄色荧光粉按上述厚度和条件制备高显色荧光膜和低色温4460 K、高显色指数91.7的白光LED器件。  相似文献   

17.
分别采用沉淀法和水热法成功制备了Y_2(MoO_4)_3∶Eu~(3+)红色荧光粉,使用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱对其物相结构、形貌和发光性能进行表征。结果表明:Eu~(3+)含量低于20%(摩尔分数,下同)不会改变Y_2(MoO_4)_3的晶体结构;沉淀法得到荧光粉呈花状,而水热法主要得到层层堆积结构的荧光粉;所制荧光粉的主激发峰和发射峰分别位于394和614nm,这是来自掺杂Eu~(3+)的f-f电子跃迁。Y_2(MoO_4)_3荧光粉中Eu~(3+)最佳摩尔分数为20%,当Eu~(3+)含量大于20%时,出现浓度猝灭现象,其5D_0→7F_2发光浓度猝灭机理是电偶极-电偶极相互作用。  相似文献   

18.
以H3BO3助熔剂采用高温固相反应法制备了LiMo2O8∶Eu3+红色荧光粉。通过XRD、SEM及激发和发射光谱对样品进行了研究,结果表明,引入助熔剂为3 wt%时样品具有好的结晶和优良的光谱性质;光谱测量的结果表明,在近紫外、蓝光激发下,能发射出615nm的红光,具有较高的色纯度。因此,可作为目前已商品化的白光LED的红色补偿荧光粉,也可作为近紫外LED和三基色荧光粉组合型白光器件的红色荧光粉的候选材料。  相似文献   

19.
孟献丰  高俊  何禾  王云龙 《功能材料》2012,43(20):2782-2784,2789
以Eu2O3、Sr(NO3)2和(NH4)6Mo7O24.4H2O为原料,采用水热法合成了Eu3+离子掺杂的Sr0.6MoO4∶Eu0.43+红色荧光粉。用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和荧光光谱(PL)等分析手段研究了荧光粉的结构和光致发光性能。结果表明,制备的荧光粉颗粒分散均匀,形状呈类四方双锥状,粒径在0.5~2μm之间,荧光粉可以被近紫外光(396nm)和蓝光(466nm)有效激发,发射出峰值位于614nm的红光,激发波长与紫外和蓝光LED芯片相匹配。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料。  相似文献   

20.
红色荧光粉对改善白光LED(w-LEDs)发光性能具有至关重要的作用。为制备与商用LED芯片相符的、高效和稳定性好的红色荧光粉,本研究采用传统高温固相法合成了系列四方白钨矿结构的Na1–xMxCaEu(WO4)3(M=Li,K)红色荧光粉,并系统研究了Li~+和K~+的掺杂对NaCaEu(WO4)3荧光粉晶体结构、发光性能以及热淬灭特性的影响。Rietveld精修结果显示,掺杂Li~+和K~+没有改变NaCaEu(WO4)3基质的四方白钨矿结构,而是形成了固溶体,并且导致晶格常数呈现规律性的变化。光致发光光谱表明,在近紫外光395nm激发下,荧光粉呈现典型的红色发射,其最强发射峰位于617nm处,对应于Eu3+离子的~5D0→~7F2跃迁,这表明Eu3+处于非对称中心格位。更值得注意的是掺杂Li~+和K~+有效改善了NaCaE...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号