首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以NaOH和NH3.H2O为共沉淀剂,采用共沉淀法合成了前驱体Ni1/3Co1/3Mn1/3(OH)2,将前驱体与LiOH.H2O混合球磨,经过高温处理(500℃下预烧4h,然后在900℃下焙烧12h)得到锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2。考察了前驱体合成过程中还原剂水合肼对前驱体组成及正极材料电化学性能的影响,采用SEM观测前驱体的形貌,XRD分析正极材料粉末的层状结构并计算其晶胞参数,通过充放电实验测试LIB正极材料的电化学性能。结果表明,当水合肼浓度为0.48mol/L时,所得正极材料具有良好的电化学性能,在2.5~4.6V电压范围内及0.1和1C倍率下,其首次放电比容量分别为193.2和174.8mAh/g;1C倍率下经30次循环后其容量为164.6mAh/g,容量保持率为94.16%。  相似文献   

2.
采用高温固相法制备样品Li1.12Ni0.8Mn0.1Co0.1O2,采用XRD(X-ray diffraction)、SEM(Scanning electron microscope)、CV(Cycle voltammograms)和充放电循环等测试分析了材料的物理化学性质及电化学性能。XRD分析表明在合成温度为800℃时,所合成的产物为α-NaFeO2型的层状结构;SEM分析表明在合成温度为800℃时,产物为微小晶粒团聚成的球形颗粒。在40mA/g和2.5~4.3V的电压范围内,其首次放电比容量为184.1mAh/g,首次放电效率为85.9%。随着充放电次数的增多,材料的不可逆放电容量逐步减小,循环稳定性增强。循环20周后放电比容量仍能达到171.7mAh/g,容量保持率为93.26%。测试结果表明,800℃合成的正极材料Li1.12Ni0.8-Mn0.1Co0.1O2具有较高的放电比容量和优异的电化学稳定性。  相似文献   

3.
采用高温固相法合成了Li_(1.05)Fe_(0.97)Nb_(0.03)PO_4/C,考察了二次煅烧温度对材料结构和电化学性能的影响。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行表征。结果表明:700℃合成的Li_(1.05)Fe_(0.97)Nb_(0.03)PO_4/C正极材料晶体结构以及形貌没有发生改变,仍为橄榄石型结构且具有最佳电化学性能。在0.1C倍率,2.4~4.2V电压范围下首次放电比容量为161.2mAh/g;经过100次循环后,容量保持率为95.16%,具有良好的倍率性能和循环性能。  相似文献   

4.
采用草酸盐共沉淀法合成前驱体,然后经过氧化气氛高温焙烧制备了锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电技术研究了pH值、焙烧温度、焙烧时间和锂用量对材料结构、微观形貌及电化学性能的影响.草酸盐共沉淀-氧化焙烧合成LiNi0.8 Co0.1Mn0.1O2的工艺条件为:pH值为5.5,焙烧温度为800℃,焙烧时间为12h,Li/M摩尔比为1.05.所制备的LiNi0.8 Co0.1 Mn0.1 O2在0.5C倍率下的首次充放电比容量达到174.5mAh·g-1,循环20周容量保持率为88.5%.  相似文献   

5.
分别采用喷雾干燥法、溶胶-凝胶法和球磨法制备前驱体合成6LiMnPO4·Li3V2(PO4)3/C复合正极材料。利用X-射线衍射、扫描电镜和恒流充放电测试对材料物相、微观形貌和电化学性能进行表征。结果表明,喷雾干燥法处理前驱体制备的复合正极材料,粒径最小(约100nm)且分布均匀,具有最高的电化学性能。0.1C倍率下的放电容量为133mAh/g,40次循环后的容量保持率达到95%,1C倍率下的放电容量为0.1C时的75%,具有较好的循环性能和倍率性能。  相似文献   

6.
运用"溶胶-喷雾干燥-煅烧"新技术合成了正极材料LiNi0.8Co0.1Mn0.1O2,采用XRD、SEM、电化学阻抗谱(EIS)及充放电测试研究了煅烧温度对所制材料结构和电性能的影响。结果表明,在750~850℃都可制备得到纯相LiNi0.8Co0.1Mn0.1O2。其中,800℃所合成样品具有适宜的晶粒大小、最佳的晶化程度和阳离子有序度,最小的电荷传递阻抗,最大的锂离子扩散系数和最佳的电化学表现。该样品0.2C首次放电容量达到189.1mAh·g-1,以5C循环的放电比容量仍可达到136mAh·g-1,第30周0.2C放电容量达初始容量的97.5%,显示出高容量、良好的倍率与循环性能。  相似文献   

7.
研究水洗工艺对正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2性能的影响,分别采用不同的水洗时间、温度、搅拌频率和水料比进行水洗实验。采用场发射电子显微镜(SEM)和自动电位滴定仪对样品进行表征,并用半电池对样品进行容量和循环寿命测试。结果表明:搅拌频率为25Hz,搅拌时间为30min,水温在35℃,水料比为1.5∶1时其性能最佳。  相似文献   

8.
高镍三元正极材料LiNi0.8 Co0.1 Mn0.1 O2(简称NCM811)是非常有前景的动力电池用锂离子电池正极材料.LiNi0.8 Co0.1 M n0.1 O2具有比容量高、成本低、环保等优点,但也存在锂镍混排严重,容量衰减快等缺点.为解决这些问题,促进该材料在动力电池中的应用进程,本研究采用高温固相法合成了NCM811,并通过Na+掺杂对材料进行改性.采用X射线衍射仪(XRD)、扫描电镜(SEM)对材料进行形貌和结构表征.采用循环伏安(CV)、循环、倍率以及电化学阻抗(EIS)等手段研究材料的电化学性能.研究结果表明:在2.7~4.3 V,0.5 C放电条件下,当Na+掺杂量为0.1摩尔分数时,显示了185 m A h/g的初始放电比容量,循环100次后,仍保持151 m A h/g,显示出较好的循环性能.在0.2 C,0.5C,1C,2C,5C和10C下材料的放电比容量分别为195,184,158,137,112和90mAh/g,展现出较好的倍率性能.因此,适量的Na+掺杂能有效提高NCM 811材料的电化学性能.  相似文献   

9.
采用液相共沉淀法合成前驱体Ni_(0.8)Co_(0.2)(OH)_2,再通过高温焙烧合成LiNi_(0.8)Co_(0.2)O_2。研究了前驱体反应时间、反应温度、高温焙烧温度及焙烧时间对材料电化学性能的影响。对所制备材料进行恒流充放电测试,结果表明,在55℃下,共沉淀反应时间为3 h时,制备的材料具有较好的电化学性能,其首次放电比容量为164.5 mAh·g~(-1),50次容量保持率为92.6%。不同焙烧温度和焙烧时间制备材料的电化学性能的测试结果表明,随着焙烧温度的升高和焙烧时间的增加,产物的电化学性能逐渐提高。焙烧温度为800℃,焙烧时间为20 h得到材料的电化学性能最优,其首次放电比容量为162 mAh·g~(-1)。。因此,所制备的LiNi_(0.8)Co_(0.2)O_2最佳合成工艺条件为:共沉淀反应温度55℃,反应时间3 h,焙烧温度为800℃,焙烧时间为20 h。  相似文献   

10.
以氢氧化物共沉淀法合成前驱体,氢氧化锂为锂源,通过高温煅烧合成了锂离子电池正极材料LiMn_(0.5)Ni_(0.5-x)Co_xO_2(x=0、0.1、0.2)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、恒电流充放电测试、循环伏安法(CV)及电化学交流阻抗谱(EIS)技术对制备条件和钴掺杂量进行了研究。结果表明,所制材料均具有良好的α-NaFeO_2层状结构;当pH=10.5,煅烧温度为850℃,x=0.1时,所制备LiMn_(0.5)Ni_(0.4)Co_(0.1)O_2材料0.2C放电容量达155mAh/g,5C放电容量仍达110mAh/g,0.2C倍率下循环50次后的容量保持率达98%。  相似文献   

11.
以碳酸锂(Li_2CO_3)、三氧化二镍(Ni_2O_3)、三氧化二钴(Co_2O_3)及纳米级氧化铝(Al_2O_3)为原料,采用固相法合成LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)三元正极材料,通过X射线衍射和扫描电镜对正极材料的物相结构、颗粒大小及形貌进行分析与表征。结果表明:在800℃下煅烧18h的正极材料具有最好的结晶度,粒径在200~400nm之间,粒度分布均匀,没有其他杂质存在。NCA三元正极材料的电化学性能测试表明:充放电过程中Li~+脱出/嵌入较为容易,循环性能和稳定性良好,首次充电容量为145.8mAh/g,放电容量为142.2mAh/g,电化学性能较好。  相似文献   

12.
采用溶剂热法制备了Mg掺杂的磷酸铁锰锂(LiMn_(0.8-x)Fe_(0.15+x)Mg_(0.05)PO_4)正极材料。通过X射线衍射、扫描电子显微镜、恒流充放电等手段对合成样品的结构、形貌及电化学性能进行了测试与表征。结果表明,所制样品为具有良好橄榄石型结构的纳米颗粒。Mg的掺入提升了材料中Mn和Fe的容量发挥率,0.1C倍率下材料的容量提升率达23.2%,1C倍率时循环100周后材料比容量为110.1mAh/g,容量保持率高于94%。  相似文献   

13.
何康宇  曹博凯  莫岩  陈永 《材料导报》2021,35(12):12027-12031
高镍三元正极材料LiNi0.8Co0.1Mn0.1O2因具有高能量密度、环境友好等特性,一直受到工业界和科研人员的关注.然而,它在长循环过程中会产生微裂纹及容量衰减,且循环性能差,制约了其商业化应用.为了改善这些性能,本实验采用辅助熔盐法在775℃烧结制备了LiNi0.8Co0.1-Mn0.1O2单晶材料(SC-NCM811),并对其形貌、结构和电化学行为进行了系统研究.该单晶材料分散性好,颗粒尺寸在2~3μm.在10C电流密度下容量达111.3 mAh·g-1,100次循环后放电比容量为106.8 mAh·g-1,容量保持率为95.9%,明显优于二次球状材料(100次循环后的容量保持率为89.7%).电化学阻抗和循环伏安结果表明,SC-NCM在很大程度上减缓了循环过程中的极化程度以及电荷传递阻抗的增加,进而提高了材料的循环稳定性,是一种很有前途的锂离子电池正极材料.  相似文献   

14.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

15.
通过固相法制备出锂离子电池正极材料LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)样品,并通过XRD、SEM、EDS、充放电测试、CV和EIS对其结构、形貌以及电化学性能进行了研究。结果发现,适量Mg、F的掺杂未改变LiMn_2O_4的尖晶石结构。在0.2C倍率下,样品LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的首次放电比容量分别为121.3mAh/g和123.7mAh/g,循环60次后,容量保持率分别为82.1%和91.4%。在5C倍率下,样品LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的放电比容量为92.4mAh/g,而LiMn_2O_4的放电比容量仅为76.5mAh/g。Mg、F的共同掺杂,可以有效抑制锰酸锂晶体中JahnTeller效应导致的结构畸变,稳定尖晶石结构,明显改善其循环稳定性和倍率性能,并提高材料的初始放电比容量。  相似文献   

16.
采用微通道反应器法直接合成锂离子电池正极材料。并且采用XRD、FESEM、FT-IR和电化学测试系统对样品进行一系列的表征。实验结果表明,流速为100mL/min,反应物浓度为0.1mol/L时制备得到了分散比较均匀的样品,该正极材料具有良好的循环性能和倍率性能,在0.1C倍率下首次放电比容量达到136.6mAh/g。在0.4C倍率下首次放电比容量为93.73mAh/g,50个循环之后,容量基本无衰减。  相似文献   

17.
采用络合法制备了锂离子电池的活性正极材料LiNi0.9Co0.1O2粉体,实验表明合成的LiNi0.9Co0.1O2粉体结晶良好,层状结构发育完善。电池充放电测试结果表明,其容量及循环性能与LiNi0.9Co0.1O2粉体的合成温度有关,其中900℃合成得到的LiNi0.9Co0.1O2材料具有最好的电化学性能,首次放电比容量高达120.5mAh/g,循环30次后可逆放电比容量仍高达118.8mAh/g,容量损失仅为1.4%。文中对容量退化的原因进行了分析。  相似文献   

18.
合成温度对Li2FeSiO4/C电化学性能的影响   总被引:5,自引:1,他引:4  
采用球磨掺碳及固相法合成锂离子电池正极材料Li2FeSiO4/C,研究了合成温度对材料结构和电化学性能的影响.用X射线衍射(XRD)、扫描电镜(SEM)对材料的结构与形貌进行了表征;并对不同焙烧温度下合成的Li2FeSiO4/C材料的电化学性能进行了研究.结果表明,650℃合成的Li:FeSiO4/C电化学性能最佳,在C/16的倍率下首次放电容量达到144.8mAh/g,10次循环后容量仍保持有136.5mAh/g.  相似文献   

19.
采用低温固相法制备羟化氟硫酸铁正极材料。通过对煅烧温度和煅烧时间等因素进行摸索,得到最优化的实验条件,并用XRD、SEM和电化学测试系统对样品进行表征测试。研究发现,经300℃煅烧并保温10h,得到的样品颗粒尺寸均匀,尺寸保持在500nm左右,颗粒晶型完成,显示出最优的电化学性能。在0.1C倍率下首次放电比容量为60mAh/g,50次充放电循环后比容量的保持率为95.8%。  相似文献   

20.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号