首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed new photonic crystal polymerized crystalline colloidal array (PCCA) glucose sensing materials, which operate on the basis of formation of cross-links in the hydrogel. These materials are composed of hydrogels that embed an array of approximately 100-nm-diameter monodisperse polystyrene colloids that Bragg diffract light in the visible spectral region. The hydrogels change volume as the glucose concentration varies. This changes the lattice spacing, which changes the wavelength of the diffracted light. In contrast to our previous glucose sensing photonic crystal materials, we no longer require Na+ chelating agents. These photonic crystal materials are being designed for use in glucose sensing contact lens for people with diabetes mellitus. We describe methods to speed up the response kinetics of these PCCA sensing materials. Rapid-response kinetics is achieved by controlling the elasticity and the hydrophilic-hydrophobic balance of the hydrogel system. A more hydrophobic hydrogel composition is obtained by copolymerizing n-hexylacrylate into an acrylamide-bisacrylamide hydrogel. The response rate significantly increases to where it fully responds within 90 s to the average glucose concentrations found in blood (5 mM) and within 300 s to the average glucose concentrations found in tear fluid (0.15 mM). We find unusual temperature-dependent kinetics, which derive from glucose mutarotation in solution. It is shown that alpha-d-glucose is the glucose anomer binding to the boronic acid derivative. Care must be taken in any glucose determination to ensure that the glucose mutarotation equilibrium has been established. We have demonstrated that the sensor is responsive to approximately 0.15 mM glucose concentrations in artificial tear fluid solution.  相似文献   

2.
An amperometric needle-type electrochemical glucose sensor intended for tear glucose measurements is described and employed in conjunction with a 0.84 mm i.d. capillary tube to collect microliter volumes of tear fluid. The sensor is based on immobilizing glucose oxidase on a 0.25 mm o.d. platinum/iridium (Pt/Ir) wire and anodically detecting the liberated hydrogen peroxide from the enzymatic reaction. Inner layers of Nafion and an electropolymerized film of 1,3-diaminobenzene/resorcinol greatly enhance the selectivity for glucose over potential interferences in tear fluid, including ascorbic acid and uric acid. Further, the new sensor is optimized to achieve very low detection limits of 1.5 ± 0.4 μM of glucose (S/N = 3) that is required to monitor glucose levels in tear fluid with a glucose sensitivity of 0.032 ± 0.02 nA/μM (n = 6). Only 4-5 μL of tear fluid in the capillary tube is required when the needle sensor is inserted into the capillary. The glucose sensor was employed to measure tear glucose levels in anesthetized rabbits over an 8 h period while also measuring the blood glucose values. A strong correlation between tear and blood glucose levels was found, suggesting that measurement of tear glucose is a potential noninvasive substitute for blood glucose measurements, and the new sensor configuration could aid in conducting further research in this direction.  相似文献   

3.
The contact lens (CL) industry has made great strides in improving CL-wearing experiences. However, a large amount of CL wearers continue to experience ocular dryness, known as contact lens-induced dry eye (CLIDE), stemming from the reduction in tear volume, tear film instability, increased tear osmolarity followed by inflammation and resulting in ocular discomfort and visual disturbances. In this article, to address tear film thinning between the CL and the ocular surface, the concept of using a CL with microchannels to deliver the tears from the pre-lens tear film (PrLTF) to the post-lens ocular surface using in vitro eye-blink motion is investigated. This study reports an eye-blink mimicking system with microfluidic poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogel with integrated microchannels to demonstrate eye-blink assisted flow through microchannels. This in vitro experimental study provides a proof-of-concept result that tear transport from PrLTF to post-lens tear film can be enhanced by an artificial eyelid motion in a pressure range of 0.1–5 kPa (similar to human eyelid pressure) through poly(HEMA) microchannels. Simulation is conducted to support the hypothesis. This work demonstrates the feasibility of developing microfluidic CLs with the potential to help prevent or minimize CLIDE and discomfort by the enhanced transport of pre-lens tears to the post-lens ocular surface.  相似文献   

4.
This study reports the formation of a hydrogel generated by polymerizing aminophenyl boronic acid in polyvinyl alcohol (PVA). The gel formed as a result of complexation between the –OH groups of PVA, and boronic acid moieties were stable and exhibited high degree of swelling proportional to the concentration of glucose. Extended swelling was attributed to the strong affinity of the gel to glucose and to the subsequent breaking of the bond formed between PVA and boronic acid groups. Interestingly, the gel was found to bind a high amount of glucose. We evaluated the hydrogel in terms of its ability to bind glucose and to release ciprofloxacin. Retention of antibacterial efficacy of the released drug was also demonstrated. Features such as swelling, drug release, and glucose binding reflect the possibility of tuning a new dressing for wounds particularly in diabetic patients.  相似文献   

5.
We have prepared a copolymer containing both phenylboronic acid and tertiary amine moieties. The copolymer forms a stable complex with poly(vinyl alcohol) (PVA) since boronate moieties interact with PVA hydroxyl groups. The polymer-polymer complex changes its swelling degree with glucose concentration in Dulbecco's phosphate-buffered saline solution (PBS) at pH 7.4, due to the higher complex formation of boronic acid moieties with glucose hydroxyl groups over those in PVA. Glucose-responsive swelling changes of a membrane complex were then utilized to control glucose-responsive current changes with a membrane-coated platinum electrode. Glucose addition to PBS induces swelling of the cast gel membrane, leading to increased diffusion of ion species and thus increased measurable current changes. Since the addition of methyl α-d-glucoside has little influence on the current changes, the current change by the addition of glucose is indicative of the high selectivity of this system for glucose and its cis-hydroxyl groups in glucose. It is observed that current changes are proportional to glucose concentration in the range 0-300 mg/dL. This range corresponds well to physiological blood glucose levels. Current change rates determined from the slope of the time course immediately after glucose addition are also proportional to glucose concentration within this range, yielding even higher sensitivity to the change in glucose concentration. Reproducible signal output is also demonstrated by repetitive, stepwise glucose concentration changes. These results support the applicability of the platinum electrode coated with the gel membrane complex comprising a phenylboronic acid-containing polymer and PVA for a novel glucose-sensing device.  相似文献   

6.
The design of a patch-fed planar dielectric slab waveguide Luneburg lens weighing only 45 g and operated at 27 GHz in TM0 mode is described. The measured half-power beamwidth (HPBW) for a 10.8 lambda, 12-cm diameter lens fed by a microstrip patch placed in intimate contact with the lens rim is 6.9deg with 16.8 dB gain and 10% bandwidth for -10 dB feed return loss, lens cross-polar levels were below -20 dB. The lens is also capable of operating in the TE0 mode with similar radiation performance to that of the TM0 mode. Here, measured HPBW and gain is 8 and 15.5 dB at 27 GHz. Unlike other planar lens arrangements, because of its ability to handle both TM0 and TE0 modes the lens has the potential to deal with the circularly polarised signals, this aspect is also explored.  相似文献   

7.
Park JY  Chang BY  Nam H  Park SM 《Analytical chemistry》2008,80(21):8035-8044
We report a novel concept of sensing glycated hemoglobin, HbA 1c, which is now the most important index for a long-term average blood glucose level, by first selectively immobilizing it on the thiophene-3-boronic acid (T3BA) self-assembled monolayer (SAM)-covered gold electrode by a selective chemical reaction with boronic acid. HbA 1c thus immobilized is then detected by the label-free electrochemical impedance spectroscopic (EIS) measurements with a redox probe, an equimolar mixture of K 3Fe(CN) 6 and K 4Fe(CN) 6, present. The rate of charge transfer between the electrode and the redox probe is shown to be modulated by the amount of HbA 1c in the matrix hemoglobin solution due to the blocking effect caused by the binding of HbA 1c with boronic acid. Both the formation of a well-defined T3BA-SAM on the gold surface and the chemical binding of its boronic acid with HbA 1c in solution were confirmed by quartz crystal microbalance, atomic force microscopy, and EIS experiments.  相似文献   

8.
Jin Z  Chen R  Colón LA 《Analytical chemistry》1997,69(7):1326-1331
Two enzymatic reactions combined with capillary electrophoresis (CE) are used to determine glucose contained in sample volumes of ≤500 nL. In the first enzymatic reaction, glucose is oxidized in the presence of glucose oxidase producing hydrogen peroxide, which reacts quantitatively with the fluorogenic compound homovanillic acid catalyzed by the enzyme peroxidase. The second reaction generates a fluorescent species that is proportional to the glucose concentration. The reaction product is determined by CE using laser-induced fluorescence (LIF) as the detection mode. The overall reaction scheme is faster than commonly used precolumn derivatization procedures and can be performed using very small sample quantities. Alternatively, the enzymatic reactions can be performed on-column, similar to the electrophoretically mediated microanalysis approach, accommodating sample quantities in the nanoliter range. The on-column reaction is a simple and practical approach for the determination of glucose contained in low-volume samples by CE-LIF, where samples are injected directly into the capillary column without any pretreatment. However, sample handling and detectability of the precolumn approach proved to be superior. Determination of glucose using the precolumn and on-column reactions showed detection limits of 50 and 800 nM, respectively. The methods were shown to be linear in the range tested, 1-100 μM and 100 nM-30 μM, for the on-column and precolumn reactions, respectively. The reproducibility for each scheme was <5% RSD. To determine the possibility of using a noninvasive procedure for glucose monitoring, we used the CE-LIF methods to analyze human tear samples for glucose. The tear fluid samples were contained in a volume of ~200 nL. The concentration of glucose in the human tear samples analyzed using the precolumn and on-column procedures was ~138 μM.  相似文献   

9.
Contact lens is a ubiquitous technology used for vision correction and cosmetics. Sensing in contact lenses has emerged as a potential platform for minimally invasive point‐of‐care diagnostics. Here, a microlithography method is developed to fabricate microconcavities and microchannels in a hydrogel‐based contact lens via a combination of laser patterning and embedded templating. Optical microlithography parameters influencing the formation of microconcavities including ablation power (4.3 W) and beam speed (50 mm s?1) are optimized to control the microconcavity depth (100 µm) and diameter (1.5 mm). The fiber templating method allows the production of microchannels having a diameter range of 100–150 µm. Leak‐proof microchannel and microconcavity connections in contact lenses are validated through flow testing of artificial tear containing fluorescent microbeads (Ø = 1–2 µm). The microconcavities of contact lenses are functionalized with multiplexed fluorophores (2 µL) to demonstrate optical excitation and emission capability within the visible spectrum. The fabricated microfluidic contact lenses may have applications in ophthalmic monitoring of metabolic disorders at point‐of‐care settings and controlled drug release for therapeutics.  相似文献   

10.
We demonstrate a colorimetric glucose recognition material consisting of a crystalline colloidal array embedded within a polyacrylamide-poly(ethylene glycol) (PEG) hydrogel, or a polyacrylamide-15-crown-5 hydrogel, with pendent phenylboronic acid groups. We utilize a new molecular recognition motif, in which boronic acid and PEG (or crown ether) functional groups are prepositioned in a photonic crystal hydrogel, such that glucose self-assembles these functional groups into a supramolecular complex. The formation of the complex results in an increase in the hydrogel cross-linking, which for physiologically relevant glucose concentration blue shifts the photonic crystal diffraction. The visually evident diffraction color shifts across the visible spectral region over physiologically important glucose concentration ranges. These materials respond to glucose at physiological ionic strengths and pH values and are selective in their mode of response for glucose over galactose, mannose, and fructose. Thus, we have developed a new recognition motif for glucose that shows promise for the fabrication of noninvasive or minimally invasive in vivo glucose sensing for patients with diabetes mellitus.  相似文献   

11.
Jeong TM  Menon M  Yoon G 《Applied optics》2005,44(21):4523-4527
Lower- and higher-order wave-front aberrations of soft contact lenses were accurately measured with a Shack-Hartmann wave-front sensor. The soft contact lenses were placed in a wet cell filled with lens solution to prevent surface deformation and desiccation during measurements. Aberration measurements of conventional toric and multifocal soft contact lenses and a customized soft contact lens have proved that this method is reliable. A Shack-Hartmann wave-front sensor can be used to assess optical quality of both conventional and customized soft contact lenses and to assist in enhancing lens quality control.  相似文献   

12.
Dubra A  Paterson C  Dainty C 《Applied optics》2005,44(7):1191-1199
A lateral shearing interferometer designed and built for the study of the precorneal tear film topography dynamics and its effect on visual performance is presented. Simple data processing algorithms are discussed and tested on data illustrating different tear topography features: postblink tear undulation, tear breakup, eyelid-produced bumps and ridges, bubbles, and rough precontact lens tear surfaces.  相似文献   

13.
High functional ophthalmic lens materials, poly(HEMA-co-MMA)s were prepared by the copolymerization of HEMA, MMA, MA, EDGMA, and N,N-dimethylacrylamide in the presence of platinum nanoparticles with antimicrobial properties. The hydrophilic monomer N,N-dimethylacrylamide has excellent biocompatibility and oxygen transmissibility. The combination where platinum nanoparticles were added produced a colorless transparent lens. The water contents were in the range of 36.68-44.08% and the refractive index was measured to be in the range of 1.424-1.436. Meanwhile, the oxygen transmissibility ranged from 11.13 x 10(-11) to 17.63 x 10(-11) (cm2/sec) (mlO2/ml x mm Hg) increased with increasing the addition ratio of N,N-dimethylacrylamide. The physical properties measurements of the produced polymers showed that the nanoparticles did not show significant effect on the water content and refractive index of the hydrogel contact lens, but the materials effected to reduce oxygen permeability to a certain extent. The copolymers have excellent oxygen permeability, indicating that the material can be used to fabricate hydrogel contact lenses with high oxygen transmissibility.  相似文献   

14.
以角膜接触镜材料的基本要求为出发点,在相关文献和专利的基础上综述了目前软性亲水的水凝胶角膜接触镜材料的研究进展及发展趋势.特别针对传统型水凝胶角膜接触镜的透氧和均一成分构建的局限,分别重点介绍了高透氧角膜接触镜材料及互穿网络角膜接触镜材料.前者通过引入硅氧烷成分使角膜接触镜的延长配戴成为可能,后者则通过交联互锁的结构实现了材料的均一性和稳定性,从而为角膜接触镜材料在药物释放和治疗用途上的更广泛应用创造了条件.  相似文献   

15.
Interest in peptides incorporating boronic acid moieties is increasing due to their potential as therapeutics/diagnostics for a variety of diseases such as cancer. The utility of peptide boronic acids may be expanded with access to vast libraries that can be deconvoluted rapidly and economically. Unfortunately, current detection protocols using mass spectrometry are laborious and confounded by boronic acid trimerization, which requires time-consuming analysis of dehydration products. These issues are exacerbated when the peptide sequence is unknown, as with de novo sequencing, and especially when multiple boronic acid moieties are present. Thus, a rapid, reliable, and simple method for peptide identification is of utmost importance. Herein, we report the identification and sequencing of linear and branched peptide boronic acids containing up to five boronic acid groups by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protocols for preparation of pinacol boronic esters were adapted for efficient MALDI analysis of peptides. Additionally, a novel peptide boronic acid detection strategy was developed in which 2,5-dihydroxybenzoic acid (DHB) served as both matrix and derivatizing agent in a convenient, in situ, on-plate esterification. Finally, we demonstrate that DHB-modified peptide boronic acids from a single bead can be analyzed by MALDI-MSMS analysis, validating our approach for the identification and sequencing of branched peptide boronic acid libraries.  相似文献   

16.
The in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction.  相似文献   

17.
The hypoglycemic activity of insulin delivered via the various routes is commonly determined by measuring glucose levels in the whole blood samples taken intermittently at frequent intervals. This procedure is usually performed in the anaesthetized animals, however, the glucose levels determined could be higher than those in the conscious animals. Furthermore, the animals are usually excited by direct contact with the investigator during the frequent blood sampling in conscious state, which could cause the glucose level to be higher than at undisturbed state. To overcome these problems, a continuous blood glucose monitoring system was developed by connecting the sensor chamber of a glucose analyzer (YSI Industrial Analyzer model 27), which utilizes glucose oxidase for glucose measurement, to a peristaltic pump with a specially designed mixing chamber and a data acquisition station. By using this system, the hyper-/hypoglycemic activity of glucagon/insulin formulations in the conscious animals, after various routes of administration, can be determined without any interruption and/or disturbance.  相似文献   

18.
Mou X  Stenken JA 《Analytical chemistry》2006,78(22):7778-7784
Macrophages are a class of inflammatory cells believed to direct the outcome of device biocompatibility. Despite their relevance to implanted in vivo devices, particularly implanted glucose sensors, few studies have attempted to elucidate how these cells affect device performance. Microdialysis sampling probes were used to determine glucose uptake alterations in the presence of resting and activated macrophages in vitro. Significant differences for 2-deoxyglucose (2-DG) relative recovery at 1.0 microL/min were observed between resting (74 +/- 7%, n = 18) and lipopolysaccharide (LPS) (1 microg/mL)-activated (56 +/- 6%, n = 18) macrophages in culture that had 2-DG spiked into the media (p < 0.005). To establish if in vitro characterization could be correlated to in vivo studies, microdialysis probes were implanted into the dorsal subcutis of male Sprague-Dawley rats for 0, 3, 5, and 7 days. An internal standard, 2-DG, was passed through the microdialysis probe during in vivo studies. No significant differences in 2-DG extraction efficiency from the probe into the tissue site were observed in vivo among microdialysis probes implanted into the subcutaneous space of Sprague-Dawley rats for either 3, 5, or 7 days vs probes implanted the day of sample collection. These results suggest that macrophage activation in vivo at implant sites is much lower than highly activated macrophages in vitro. It is important to note that these results do not rule out the potential for increased glucose metabolism at sensor implant sites.  相似文献   

19.
Mao Y  Chang S  Sherif S  Flueraru C 《Applied optics》2007,46(23):5887-5894
The quality and parameters of probing optical beams are extremely important in biomedical imaging systems both for image quality and light coupling efficiency considerations. For example, the shape, size, focal position, and focal range of such beams could have a great impact on the lateral resolution, penetration depth, and signal-to-noise ratio of the image in optical coherence tomography. We present a beam profile characterization of different variations of graded-index (GRIN) fiber lenses, which were recently proposed for biomedical imaging probes. Those GRIN lens modules are made of a single mode fiber and a GRIN fiber lens with or without a fiber spacer between them. We discuss theoretical analysis methods, fabrication techniques, and measured performance compared with theory.  相似文献   

20.
Abstract

The hypoglycemic activity of insulin delivered via the various routes is commonly determined by measuring glucose levels in the whole blood samples taken intermittently at frequent intervals. This procedure is usually performed in the anaesthetized animals, however, the glucose levels determined could be higher than those in the conscious animals. Furthermore, the animals are usually excited by direct contact with the investigator during the frequent blood sampling in conscious state, which could cause the glucose level to be higher than at undisturbed state. To overcome these problems, a continuous blood glucose monitoring system was developed by connecting the sensor chamber of a glucose analyzer (YSI Industrial Analyzer model 27), which utilizes glucose oxidase for glucose measurement, to a peristaltic pump with a specially designed mixing chamber and a data acquisition station. By using this system, the hyper-/hypoglycemic activity of glucagon/insulin formulations in the conscious animals, after various routes of administration, can be determined without any interruption and/or disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号