首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法合成掺杂的Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)Sn_xO_2的正极材料,通过X射线光谱、扫描电镜、充放电测试等技术对Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)SnxO_2材料的结构、形貌、电化学性能进行表征。结果表明,采用共沉淀法Sn4+能有效掺杂进正极材料Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3)O_2的体相结构。掺杂量x=0.04时,在2.8~4.2V、0.2C倍率下掺杂的正极材料首次充放电比容量为138.5mA·h/g,30次循环后的容量保持率为96.96%。掺杂Sn4+对Li_(1/3)Ni_(1/3)Co_(1/3) Mn_(1/3)O_2正极材料改性后,材料仍保持典型的α-NaFeO_2层状结构,且晶型良好,表明Sn4+掺杂能够有效改善材料的电化学性能。  相似文献   

2.
采用固相配位法制得石墨烯包覆的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂层状正极材料。用X射线衍射、场发射扫描电镜、循环伏安、恒流充放电和电化学阻抗谱等分析技术对其相组成、微结构和电化学性能进行表征。结果表明:石墨烯包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2材料的电化学性能显著提高,该材料在电流密度为20 mA/g(0.1C)和1 000 mA/g(5C)时的放电比容量分别为240,132 mAh/g;在电流密度为200 mA/g(1C)时,充放电循环100次后,其比容量保持率为84%。  相似文献   

3.
为获得质量合格的Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2产品,以络合共沉淀方法制备了Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2,考察了加碱量、加氨量、加水量对前期启釜,以及后续络合共沉淀稳定性的影响。结果表明,过高或者过低的加碱量、加氨量和加水量都不利于启釜以及络合共沉淀稳定性过程控制;加碱量控制在使启釜底液pH值为11~12,加氨量控制在使启釜底液中氨质量浓度为1 500~2 000μg/mL,加水量与反应釜体积比值为0.4~0.5,在该条件下可以合成反应周期适中、性能较高的Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2产品。  相似文献   

4.
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2是一种具有高能量密度的锂离子电池正极材料,但实际应用中的循环性能不佳、热稳定性差等缺陷亟待改善。本研究通过高温固相反应法制备了LiNi_(0.8)-Co_(0.1)Mn_(0.1)O_2材料,并采用H_3BO_3对其进行包覆改性。扫描电镜(SEM)显示包覆热处理后正极材料表面形成了一层不均匀絮状包覆物,X射线光电子能谱(XPS)测试显示该包覆物为LiBO_2和Li_2B_4O_7的混合物。电化学测试表明包覆物有效减缓了循环过程中的阻抗增加,显著提升了正极材料的容量与循环性能,其中0.5%包覆的正极材料0.2 C首次放电容量达到195.9 mAh·g~(-1),1 C循环100周后容量保持率达到88.7%。  相似文献   

5.
《焦作工学院学报》2019,(6):146-150
为提高锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的综合电化学性能,采用高温固相法对其表面进行ZrO_2包覆。以X射线衍射、扫描电子显微镜、电化学阻抗和电化学充放电等方法对材料进行表征。结果显示,ZrO_2可均匀分布在LiNi_(0.8)Co_(0.2)O_2表面而不影响其晶体结构,但对电化学性能影响明显,即首次放电容量略有降低,由168.25 mAh/g降到157.43 mAh/g;1C、2C倍率性能有较大改善,循环性能的提高尤其突出,在100周循环内,LiNi_(0.8)Co_(0.2)O_2的容量保持率从90.68%提高到97.70%。其原因是:(1)包覆层有效避免了电解液与正极材料直接接触、抑制副反应的发生;(2)包覆过程中生成的Li_2ZrO_3提高了材料的离子导电性。该研究结果为改善锂离子电池正极材料综合电化学性能提供了简便、有效的方法。  相似文献   

6.
以Li_2CO_3为锂源,采用纳米砂磨辅助固相合成了纯相LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料,研究了Li_2CO_3加入方式对所得样品结构、形貌以及电化学性能的影响.结果表明,加锂方式基本不影响材料的形貌和尺寸,但对材料的微结构和性能有明显的影响.纳米砂磨一步混合所有原料烧结所得LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的阳离子混排程度比后研磨加碳酸锂烧结所得LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的要低,更利于锂离子的扩散,对应的样品具有更高的放电比容量和库伦效率,但循环性能没有太大的差别.纳米砂磨一步混合所有原料在800℃烧结得到的LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品,1C循环首次放电比容量可达170.9 m Ah/g,50次循环后容量保持率为92.6%.  相似文献   

7.
To improve the cyclic stability at high temperature and thermal stability, the spherical Al_2O_3-modified Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 was modified successfully with nano-Al_2O_3. The discharge capacity retention of Al_2O_3-modified Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2, the Al_2O_3-modified material cathode exhibited good thermal stability.  相似文献   

8.
为开发具有优良循环性能和安全性能的大型锂离子电池的正极材料,将不同比例的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4材料进行共混,研究了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4共混以及共混比例(10∶0、8∶2、7∶3、6∶4、5∶5、0∶10)对锂离子电池的首次放电性能、循环性能和倍率性能以及交流阻抗和循环伏安曲线的影响,并采用扫描电镜对电极材料进行了表征.研究结果表明,共混比例会影响材料的电化学性能,8∶2,7∶3和6∶4配比的混合材料的体积比容量、循环性能和倍率性能要好于纯LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4材料.其中,8∶2配比的材料性能最好.  相似文献   

9.
The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O  相似文献   

10.
采用一步草酸盐法制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂层状正极材料,采用X射线衍射、感应耦合等离子炬(ICP)发射光谱仪、场发射扫描电镜、透射电镜和电化学分析技术对材料的组成、结构和电化学性能进行表征与分析。结果表明:制得的富锂层状正极材料呈不规则棒状,长度为2~4 mm,直径约200 nm;其化学计量精确、层状结构发育良好、阳离子分布混合度较低;在电流密度为20 m A/g条件下,其首次放电比容量为242.4 m A·h·g-1,首次库仑效率为74.9%;当电流密度增大到1 000 m A/g时,放电容量仍可高达98.8 m A·h·g-1;在电流密度为200 m A/g充放电100个循环后,其容量保持率为76.8%。  相似文献   

11.
通过静电纺丝技术制备了具有一维管状结构的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料,研究了煅烧温度对电极材料表面形貌和电化学性能的影响.结果表明,煅烧温度为850℃时所制产物具有较好的离子扩散性能,在50 m Ah·g~(-1)的电流密度下首次放电比容量为249.5 m Ah·g~(-1),50次循环后的容量保持率为87%,表现出较高的放电比容量和较好的循环稳定性.  相似文献   

12.
采用共沉淀法制得的不同陈化时间前驱体均由α-Ni(OH)2和β-Ni(OH)2两相混合组成.随着前驱体中α-Ni(OH)2相对含量增大,对应烧结产物LiNi0.8Co0.1Mn0.1O2的峰强比I(003)/I(104)越大,层状结构越完整,阳离子混排度越小,说明α-Ni(OH)2相的存在可以抑制阳离子混排.陈化12 h前驱体制得的LiNi0.8Co0.1Mn0.1O2峰强比I(003)/I(104)=1.27,其首次放电容量121.9 mA·h/g,30次循环后放电容量113.1 mA·h/g,容量保持率92.8%,其质量比容量大,循环性能好.  相似文献   

13.
针对镍钴锰氢氧化物产品中钠和硫含量高的问题,用共沉淀法制备了Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2,讨论了在洗涤过程中不同洗涤剂、洗涤温度、洗涤时间、洗涤剂浓度对Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2中硫和钠质量分数的影响。结果表明,当洗涤剂为0.6 mol/L NaOH溶液,洗涤温度为60℃,洗涤时间为30 min,在此工艺参数下洗涤效果最好,硫质量分数降到0.15%以下,钠质量分数降到0.012%以下。  相似文献   

14.
以MnO_2/PAN/DMF为前驱体,通过静电纺丝和惰性气氛下退火处理制备出MnO/C纳米纤维,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的复合膜纤维直径为300~500 nm;其中MnO_2添加量为1.0g时制得的纳米纤维膜的形貌和性能最理想,当电流密度为1.0 A·g~(-1)时,经过200个循环,容量仍然保持在320mA·h·g~(-1);在电流密度3.0 A·g~(-1)下,可逆容量为201 mA·h·g~(-1),展现了极好的倍率性能和循环性能。  相似文献   

15.
采用高温固相反应方法合成锂离子电池正极Li_2Fe_(1-x-y)Mn_xNi_ySiO_4/C复合材料,并采用X-ray线衍射、扫描电子显微镜和电化学分析方法,研究了Ni和Mn离子共掺杂及碳修饰复合改性对复合材料结构和性能的影响。结果表明,复合改性没有对材料的晶体结构造成改变,镍锰离子共掺杂和表面碳包覆能有效提高材料的比容量和循环性能;以C/32倍率充放电,复合掺杂得到的Li_2Fe_(0.6)Mn_(0.2)Ni_(0.2)SiO_4/C材料样品的电化学性能最优,根据实测结果,该复合材料的首次放电比容量达到149 m Ah·g~(-1),充放电循环10次以后容量保持率仍有95.3%。  相似文献   

16.
采用共沉淀高温固相反应法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(811),通过掺入Li、Mg和Al元素,并采用SEM、XRD、电化学测试,研究掺杂对材料晶体结构和电化学性能影响规律.实验结果表明:共沉淀过程中三价金属离子(Mn~(3+)、Al~(3+))出现会促使少量α-Ni(OH)2形成,而Li~+、Mg~(2+)和Al~(3+)均溶入晶格无杂相析出.高温融锂反应中,三种掺杂元素显著削弱Ni~(2+)出现数量,抑制Ni~(2+)混排进入Li~+格位,大幅提升811基体可逆容量;Mg~(2+)、Al~(3+)掺杂进一步增强基体晶格稳定性,改善其循环性能;Li~+-Al~(3+)共掺杂使之达到最佳:首次充电效率ICE超过90%,0.2C倍率下50次循环容量达195.8 m Ah/g、容量保持率为96.2%.  相似文献   

17.
为了提高锂离子电池富锂锰基正极材料的电化学性能,尤其是倍率性能,采用过硫酸铵作为处理剂对富锂锰基正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2进行表面处理,诱发化学预活化,形成有利于锂离子迁移的表面尖晶石结构。电化学测试结果显示,当过硫酸铵与Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2质量比为1:5时,经过硫酸铵表面处理后的正极表现出优异的电化学性能:0.2 C下放电容量为257.1 mAh/g,首圈库伦效率高达96.8%, 3 C大倍率下放电容量仍达到157.2 mAh/g。交流阻抗测试结果表明,适量过硫酸铵处理之后材料的界面电荷转移阻抗显著降低,导致锂离子界面迁移速率加快,表现出良好的倍率性能。这种简单易行的改性方法为实现富锂锰基正极在动力锂离子电池领域的应用提供了新思路。  相似文献   

18.
以油酸同时作为表面活性剂和碳源,通过简单的方法制备了不同碳含量的超细Li_2MnSiO_4@C纳米颗粒。扫描电镜(SEM)和透射电镜(TEM)照片显示样品颗粒非常均匀且粒径非常小,只有10~20nm。当油酸加入量与LiOH的物质的量的比为2∶1时,得到的Li_2MnSiO_4@C纳米材料(LMS2)电化学性能最好;在0.05C的倍率下,材料的首次放电容量达到313mA·h·g~(-1),经过50个循环后,放电比容量仍保持为154.7mA·h·g~(-1)。材料优异的电化学性能可归因于其具有极小的粒径、疏松多孔的结构和较高的电导率。  相似文献   

19.
采用共沉淀法在不同pH条件下制备得到球形的前驱体,通过固相法与锂源合成正极材料Li[Li0.2Ni0.2Mn0.6]O2,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的前驱体呈球状颗粒,其中pH=8.0时制得的前驱体的结晶度和球形形貌最理想;合成的正极材料具有层状结构,在950℃下合成的材料电化学性能和循环稳定性最佳,在2.04.8 V、0.2 C条件下,首次放电比容量为220.4 m Ah/g,循环20次后保持率高达97%。此外,该材料的倍率性能也最好,在1 C下充放电,其放电比容量仍保持200.9 m Ah/g。 更多还原  相似文献   

20.
利用共沉淀法合成MnCO_3微球与Li_2CO_3进行固相反应制备了尖晶石LiMn_2O_4微球。通过吡咯在LiMn_2O_4表面上进行化学氧化聚合合成了聚吡咯包覆LiMn_2O_4微球(PPy@LiMn_2O_4)。聚吡咯包覆层不仅可以提高LiMn_2O_4微球的电子导电率,而且其本身像一个电容器。这种结构特点有利于提高LiMn_2O_4的容量,倍率性能和高倍率循环稳定性。通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电等方法测试了电极材料的电化学性能,研究表明:PPy@LiMn_2O_4显示了比LiMn_2O_4微球更好的电化学储锂性能,包括高比容量(118.4 mA·h·g~(-1))、高倍率性能(5C,104.5 mA·h·g~(-1))。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号