首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学脱合金法制备了具有纳米多孔结构的SnSb合金材料,并将其应用于钠离子电池的负极.电化学性能测试结果表明,与SnSb颗粒相比,这种具有孔道与韧带双连续结构的合金负极具有高的放电比容量、优良的循环性能和倍率性能.在50 mA·g~(-1)的电流密度下首次放电比容量为419.9 mAh·g~(-1);25次循环之后容量可达264.3 mAh·g~(-1);在150 mA·g~(-1)的放电倍率下,其放电比容量仍可达350.2 mAh·g~(-1).  相似文献   

2.
通过化学共沉淀法制备SnSb纳米合金,并以此为主体材料表面包覆石墨烯的核壳结构复合材料SbSn/rGO用作钠离子电池负极材料。通过XRD、SEM、EDS测试分析材料的物相结构与形貌,通过循环伏安、恒流充放电测试分析材料的电化学性能。研究表明,SbSn/rGO复合材料缓解了SnSb纳米合金团聚和体积膨胀效应,增强了材料的循环稳定性和倍率性能。SbSn/rGO复合材料150 mA·g~(-1)电流密度及0~3 V充放电电压测试,首次充放电容量为650、700 mA·h·g~(-1),第50次循环的放电比容量保持在350 mA·h·g~(-1),大幅度提高钠电负极材料比容量和循环稳定性。  相似文献   

3.
通过静电纺丝技术制备了具有一维管状结构的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料,研究了煅烧温度对电极材料表面形貌和电化学性能的影响.结果表明,煅烧温度为850℃时所制产物具有较好的离子扩散性能,在50 m Ah·g~(-1)的电流密度下首次放电比容量为249.5 m Ah·g~(-1),50次循环后的容量保持率为87%,表现出较高的放电比容量和较好的循环稳定性.  相似文献   

4.
通过十六烷基三甲基溴化铵(CTAB)辅助二次水热法合成了o-LiMnO_2微米棒。首先以KMnO_4和CTAB为原料合成了γ-MnOOH微米棒,然后再以γ-MnOOH为前驱物在LiOH溶液中通过第2步水热反应制备出表面粗糙的o-LiMnO_2微米棒。实验结果表明:当第2步水热反应温度为200℃、时间为15 h、n(Li)∶n(Mn)=12∶1时所得样品的电化学性能最优。该样品在电流密度为30、200 mA·h·g~(-1)时最大放电容量分别达到220、117 mA·h·g~(-1),且经过40次循环后放电容量仍高达176、112 mA·h·g~(-1),表现出较好的循环稳定性和倍率性能。  相似文献   

5.
以油酸同时作为表面活性剂和碳源,通过简单的方法制备了不同碳含量的超细Li_2MnSiO_4@C纳米颗粒。扫描电镜(SEM)和透射电镜(TEM)照片显示样品颗粒非常均匀且粒径非常小,只有10~20nm。当油酸加入量与LiOH的物质的量的比为2∶1时,得到的Li_2MnSiO_4@C纳米材料(LMS2)电化学性能最好;在0.05C的倍率下,材料的首次放电容量达到313mA·h·g~(-1),经过50个循环后,放电比容量仍保持为154.7mA·h·g~(-1)。材料优异的电化学性能可归因于其具有极小的粒径、疏松多孔的结构和较高的电导率。  相似文献   

6.
以MnO_2/PAN/DMF为前驱体,通过静电纺丝和惰性气氛下退火处理制备出MnO/C纳米纤维,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的复合膜纤维直径为300~500 nm;其中MnO_2添加量为1.0g时制得的纳米纤维膜的形貌和性能最理想,当电流密度为1.0 A·g~(-1)时,经过200个循环,容量仍然保持在320mA·h·g~(-1);在电流密度3.0 A·g~(-1)下,可逆容量为201 mA·h·g~(-1),展现了极好的倍率性能和循环性能。  相似文献   

7.
为了利用简单的生产工艺制备性能优异的锂离子电池负极材料,采用电弧熔炼-甩带的工艺制备出铁钒合金条带,再通过氧化还原方法成功制备出纳米多孔铁掺杂钒氧化物(Fe-VO_x)复合材料,对材料物相和结构进行了表征,并且对比分析了在不同还原温度下纳米多孔Fe-VO_x复合材料的电化学性能。结果表明:在还原温度为500℃、5%H_2/Ar混合气氛下,材料电化学性能最优,在电流密度为0.1 A/g下,初始放电比容量为563.4 mA·h/g,在循环100圈后的放电比容量仍能达到441 mA·h/g,循环容量保持率达到78.2%,远大于石墨的理论比容量372 mA·h/g。这说明纳米多孔铁掺杂钒氧化物复合材料能够有效提高锂离子电池的能量密度,并且具有良好的电化学性能。  相似文献   

8.
以四水合乙酸镍为原料、硫代乙酰胺为沉淀剂和硫源,采用一步溶剂热法合成了介孔富有的多孔NiS中空亚微球。并采用XRD、FESEM、EDS、TEM、HRTEM、SAED、XPS和氮气吸脱附测试以及循环伏安(CV)、恒流充放电、交流阻抗等进行了材料表征和电化学性能测试。研究结果表明,所合成的NiS为介孔富有的多孔中空亚微球结构,且其尺寸大小较为均匀,壳层较薄。这种独特的多孔中空结构使得其作为超级电容器电池型正极材料时表现出优异的电化学性能:3 A·g~(-1)电流密度下的比容量值为155.4mA·h·g~(-1),20 A·g~(-1)电流密度下的比容量值仍然保持在92.9 mA·h·g~(-1),倍率容量保持率为59.8%,且在5 A·g~(-1)电流密度下5 000次循环后比容量仍可达115.3 mA·h·g~(-1),初始容量保持率为85.0%。  相似文献   

9.
采用锌金属有机配合物(MOF-5)煅烧得到的多孔碳材料作为阴极材料,以锌箔作为阳极,硫酸锌中系水溶液作为电解液构建了锌离子复合电容器。在电化学性能测试中,锌离子复合电容器表现出了优异的电化学性能,如高放电比容量(在1 A·g~(-1)的电流密度下放电比容量为55 mAh·g~(-1)),良好的倍率性能,高能量密度(46 Wh·kg~(-1)),优异的循环稳定性(在1 A·g~(-1)的电流密度下进行8 000次充放电循环后,锌离子复合电容器的放电比容量保持率接近100%)。  相似文献   

10.
为了改善二硫化钼(MoS_2)材料作为锂离子电池负极材料的电化学性能,对其进行复合改性,通过二氧化硅和碳前驱体在碳纳米管上的连续沉积,结合碳化、刻蚀和水热法合成二硫化铜@碳纳米管中管(MoS_2@CTTs)复合材料。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射式电子显微镜(TEM)分析MoS_2@CTTs复合材料的物相组成及微观形貌;通过恒流充放电测试、倍率性能测试和循环伏安测试研究该材料的电化学性能。结果表明:在150 mA/g的电流密度时,该材料首次放电比容量达到1057 mAh/g;经过175次循环后,其放电容量为856 mAh/g,容量保持率为81%。这说明制备所得复合材料具有较高的比容量和优异的循环性能。  相似文献   

11.
本文以Li2CO3 、MnO2为原料,采用微波热处理合成锂离子电池正极材料LiMn2O4,研究了热处理温度,Li/Mn摩尔比对产物结构和电化学性能的影响,同时研究了微波热处理和传统热处理两种加热方式的差别.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试分别对产物的结构、形貌及电化学性能进行表征,结果表明:采用微波法在750℃保温15 min,快速地制备出尖晶石型LiMn2O4,纯度高,尺寸分布均匀,约100-300 nm;于0.1C倍率下,以微波法制备的正极材料首次放电比容量可达112.38 mA·h/g,1C倍率充放电50次循环后,容量保持率为91.6%;以传统方法制备的正极材料0.1C倍率下首次放电比容量为94.07 mA·h/g,1C倍率充放电50次循环后,容量保持率为71.4%  相似文献   

12.
《南昌水专学报》2019,(4):104-108
针对高比能二次电池中,锂硫电池在反应过程中出现的中间产物溶解流失及体积膨胀等问题,采用模板法制备了一种具有空心结构的高孔容介孔碳球(标记为SiO_2~-空心碳),不仅提高了载硫量,而且可将多硫化物吸附在球体的空心结构和壳层的介孔孔隙中,从而抑制活性物质的溶解流失。扫描电子显微镜(SEM)和透射电子显微镜(TEM)、氮气吸脱附表征结果表明多孔碳呈空心球结构,壳层布满介孔孔隙,孔径约为2~4 nm; X-射线衍射(XRD)图谱说明单质硫均匀分散在空心碳孔隙结构中;热重分析结果显示,SiO_2~-空心碳/S复合材料的硫含量为74. 2%;电化学测试表明,其首周放电比容量增加至1608. 6(mA·h·g~(-1)),循环100周后仍保持在863. 4(mA·h·g~(-1))以上,说明SiO_2~-空心碳/S复合材料具有较好的电化学活性及循环稳定性。采用KS6为导电剂,可以使复合硫电极循环100周后的可逆比容量提高至961(mA·h·g~(-1)),容量保持率提高至61. 7%,可见KS6导电剂可以明显改善SiO_2~-空心碳/S复合材料的循环性能。  相似文献   

13.
为改善SnO_2作为锂离子电池负极材料的电化学表现性能,利用溶剂热法制备SnO_2纳米颗粒,通过球磨法将SnO_2与多孔导电碳和石墨烯掺杂制得SnO_2/石墨烯/多孔碳复合材料,并研究了掺杂不同比例多孔碳的复合材料的电化学性能。结果表明:含15.79%多孔碳的SnO_2/石墨烯/多孔碳复合材料性能最好,初始可逆容量达1 221 m Ah·g~(-1);拥有良好的循环稳定性,在200 m A·g~(-1)电流密度下循环50次后,放电容量维持在834 m Ah·g~(-1);在100,200,400,800,1 600 m A·g~(-1)电流密度下,放电容量分别为1 221,1 093,993,796,526 m Ah·g~(-1),表现出良好的倍率性能。适量的多孔碳结合层状石墨烯形成特殊的物理结构,强化了SnO_2在充放电过程中的结构稳定性,进而提高了其电化学循环稳定性;石墨烯/多孔碳复合材料的掺杂提高了锂离子电池负极材料SnO_2的导电性,同时提高了其电化学性能。  相似文献   

14.
利用共沉淀法合成MnCO_3微球与Li_2CO_3进行固相反应制备了尖晶石LiMn_2O_4微球。通过吡咯在LiMn_2O_4表面上进行化学氧化聚合合成了聚吡咯包覆LiMn_2O_4微球(PPy@LiMn_2O_4)。聚吡咯包覆层不仅可以提高LiMn_2O_4微球的电子导电率,而且其本身像一个电容器。这种结构特点有利于提高LiMn_2O_4的容量,倍率性能和高倍率循环稳定性。通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电等方法测试了电极材料的电化学性能,研究表明:PPy@LiMn_2O_4显示了比LiMn_2O_4微球更好的电化学储锂性能,包括高比容量(118.4 mA·h·g~(-1))、高倍率性能(5C,104.5 mA·h·g~(-1))。  相似文献   

15.
室温下,以高锰酸钾为锰源,在不同浓度盐酸溶液中合成了球形α-,γ-,δ-MnO2。该合成方法简单,不需要任何模板、表面活性剂和还原剂,室温下即可制备MnO2刺球。采用XRD、SEM对产物进行了结构和形貌的表征。考察了所制备的二氧化锰在锂离子电池中的充放电性能。结果表明,盐酸浓度对产物晶型、形貌和电化学性能产生重要影响。当盐酸浓度为4%时,MnO2为分布均匀的纳米刺球,首次放电比容量可以达到172 mA h.g-1,充放电循环50周后,比容量仍达到100mA h.g-1。  相似文献   

16.
通过两步水热法合成了可用作锂离子电池负极材料的二氧化锡-石墨烯-炭(SnO2-Gn-C)三元复合物.采用X射线粉末衍射(XRD)、透射电镜(TEM)和电化学测试研究了SnO2-Gn-C复合物的晶型结构、形貌和电化学性能,并考察了反应温度和Sn/Gn物质的量比对复合物电化学性能的影响.实验结果显示,SnO2-Gn-C复合物在200mA· g-1电流密度下初始放电比容量达到1 225mA·h·g-1,50次充放电循环后比容量仍有约229mA.h·g-1.SnO2-Gn-C良好的电化学性能主要归结于大比表面积的石墨烯对SnO2纳米粒子的良好分散作用、石墨烯和炭的高导电性以及炭包覆后的复合物充放电时体积效应的显著减小.  相似文献   

17.
为了抑制锂碘(Li-I_2)电池充放电过程中碘单质的溶解穿梭效应和自放电效应,提高Li-I_2电池的循环稳定性,以多孔活化石墨烯(AG)为载体,采用溶液吸附法制备了碘-活化石墨烯(I_2-AG)复合材料。结构测试结果表明,AG为三维层状堆积的疏松多孔结构,具有较高的比表面积、丰富的纳米孔结构和大孔容,有利于活性物质碘的负载及充放电过程中离子的传输。电化学测试结果表明,I_2-AG复合材料表现出了优良的电化学循环和倍率性能,具体表现为I_2-AG复合材料在1、2、5和20 C倍率下的放电比容量分别为325.3、302、293.3和270.4 mA h g~(–1),循环500周后,其剩余放电比容量分别为220.6、209.9、234.7和274.3mA h g~(–1)。整体而言,制备的I_2-AG复合材料有效地抑制了碘单质的溶解穿梭效应和自放电效应。  相似文献   

18.
通过共沉淀法合成的球形Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2前驱体与LiOH·H_2O均匀混合,经高温固相反应合成了层状结构球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。利用扫描电子显微镜(SEM)对不同形成时间的球形前驱体形貌观察,结果表明:Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2前驱体是由无数微小的纳米片由内而外竖向聚集而形成的二次颗粒,其形成经历了由疏松逐渐变致密的过程。经过高温锂化之后,一次结构由纳米层片转变为纳米颗粒,球状二次颗粒形貌未发生明显改变。X-射线衍射(XRD)测试结果表明:与普通溶胶凝胶法的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2样品相比,球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2具有更加完整的层状结构。充放电测试结果表明:球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2具有更高的比容量、更好的循环稳定性、更好的倍率性能。球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2在0.2C(1C=160mA·g~(-1))时的放电容量达到186.2mA·h·g~(-1),0.5C时达到158.9mA·h·g~(-1),1C时达到129.0mA·h·g~(-1),100次循环后仍然可以保留88.9%的容量。  相似文献   

19.
采用水热法合成了WO_3/rGO纳米复合材料,并将其用作锂离子电池负极材料。水热处理过程中将氧化石墨烯(GO)还原转变成了还原型氧化石墨烯(rGO),氧化石墨烯经还原后会产生不饱和的、共轭的碳原子,表面缺陷增加从而活性位点增加,使电导率显著增加。结果显示:所制备的WO_3/rGO纳米复合材料中,WO_3均匀地负载到了rGO纳米片上。电化学测试表明:所获得的WO_3/rGO纳米复合材料首次放电比容量达到1 135.7mA·h·g~(-1);200圈以后依然能够保持较高的放电比容量(780mA·h·g~(-1))。  相似文献   

20.
通过溶剂蒸发法制备了甲壳胺(CTS)/双金属硝酸盐复合膜(MN-NO_3),经氮气氛高温煅烧与空气氛回火,制备了氮掺杂的部分石墨化碳(N-PGC)/过渡金属氧化物(TMOs)复合材料,考察其作为超级电容器电极材料的电化学性能。分别研究了金属离子种类、浓度以及煅烧温度对产物结构及电化学性能的影响。实验结果表明:当金属离子与CTS的质量比为9/80时,制得的N-PGC/CoAl-TMOs复合材料在2A·g~(-1)电流密度下比电容为462.2F·g~(-1),经过500次充放电循环,复合物比电容保留率为91.9%;电流密度增加到10A·g~(-1)时,其比电容为424.6F·g~(-1),具有良好的倍率特性和循环稳定性;金属含量过高时,产物易发生团聚,导致比表面积下降;当煅烧温度为800℃时,N-PGC/TMOs复合材料性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号