首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

2.
用光学显微镜、X射线衍射仪以及电子万能试验机,研究了正挤压-扭转剪切变形对AZ31、AZ61和AZ80镁合金组织和力学性能的影响。结果表明,经正挤压-扭转剪切变形后,镁合金发生了显著的晶粒细化和基面织构弱化,其中:AZ61镁合金发生了充分的动态再结晶,可将晶粒尺寸显著细化至3 μm,随挤压温度的升高,晶粒有所长大,基面织构受位错脱钉作用而进一步弱化。AZ31镁合金在挤压温度为250℃时获得优良的力学性能,其压缩率和抗压强度分别高达29.2%和395 MPa  相似文献   

3.
AZ31镁合金板材双向循环弯曲的孪晶组织及织构   总被引:1,自引:0,他引:1  
采用等温双向循环弯曲工艺(bidirectional cyclic bending technology,BCBT)改善了AZ31镁合金板材的微观组织、织构和力学性能。循环弯曲变形能够产生压缩变形与拉伸变形的交替变化,使镁合金材料发生压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,改善了镁合金材料性能。AZ31镁合金板材在变形温度为483 K时经过3个道次的等温双向循环弯曲变形后,基面织构得到明显弱化,织构强度由原始9.59降低到变形后3.54,平均晶粒尺寸为12.2μm。在变形温度443 K,经过1个道次变形后,AZ31镁合金板材的抗拉强度为325 MPa,屈服强度为225 MPa。与原始坯料力能参数相比,抗拉强度提高了19%,屈服强度提高了28%。当变形温度483 K循环变形3道次时,材料的伸长率为17.1%,比原始材料提高了42%。  相似文献   

4.
试验研究了退火温度对AZ31镁合金挤压棒组织和织构的影响.结果表明:铸态镁合金挤压后,初始强点织构向(80°,90°,0°)面聚集,主要织构组分强度提高.对热挤压后的AZ31镁合金进行退火,可以细化晶粒,使组织均匀,300℃退火时平均晶粒尺寸5μm为最小;随着退火温度的升高,形变织构(80°,90°,0°)逐渐减弱,再结晶织构(0°,90°,0°)和(90°,55°,0°)逐渐增强,300℃退火之后二者均被弱化,400℃退火之后取向分布漫散度增大.  相似文献   

5.
连续变断面循环挤压AZ31镁合金的组织与性能   总被引:1,自引:0,他引:1  
采用连续变断面循环挤压法分别对变形镁合金AZ31铸锭和商业AZ31进行不同循环道次的变形,考察其组织、性能变化.结果表明:AZ31镁合金铸锭经过一个循环的挤压,晶粒明显细化.商业AZ31铝合金材料分别进行2、4、6、8次循环变形,随着变形量增大,平均晶粒尺寸不断减小,组织趋于均匀;真应变为16时,平均晶粒尺寸为5.5 μm;随着循环次数增加,伸长率不断增加,与原始态的相比可提高2倍左右,但强度没有明显变化.  相似文献   

6.
对AZ31镁合金热轧板在350℃进行了累积叠轧焊(ARB)变形,采用EBSD技术研究了AZ31镁合金的微观组织和织构演变.结果表明,ARB可以显著细化AZ31镁合金的晶粒组织,经过3道次变形后平均晶粒尺寸为2.18μm,后续的ARB变形使AZ31镁合金的微观组织更均匀,但晶粒不会再显著细化,说明存在临界ARB变形道次,使晶粒细化和晶粒长大之间达到动态平衡.AZ31镁合金在ARB变形过程中的晶粒细化机制为连续动态再结晶,尤其还观察到了旋转动态再结晶.动态再结晶的形变储存能来源于多道次累积的剧烈应变和沿厚度方向分布复杂的剪切变形.ARB变形过程中旋转动态再结晶和剪切变形使新晶粒c轴发生旋转,导致基面织构弱化.  相似文献   

7.
等通道角挤压变形AZ31镁合金的变形行为   总被引:6,自引:2,他引:4  
研究挤压态和等通道角挤压(EcAE)态AZ31镁合金的变形行为与微观组织的相关性.结果表明,ECAE态AZ31镁合金的室温拉伸屈服强度与晶粒尺寸之间表现出反Hall-Petch关系,且拉压不对称性明显减弱;在室温压缩时表现出应变速率敏感性,并随变形温度升高,应变速率敏感性因子变大.挤压态合金的晶粒度为20 μm,具有典型的挤压丝织构,主要变形方式为基面位错滑移和孪生,导致了合金中明显的拉压不对称性.ECAE态合金平均品粒尺寸约为2μm,织构相对随机化,导致合金压缩时孪生比率明显下降,其他变形模式比率增加,提高了变形抗力,降低了拉压不对称性.ECAE态AZ31镁合金压缩的激活能接近其晶界扩散激活能,晶界滑移在一定程度上导致了合金的反Hall-Peteh关系的出现以及应变速率敏感性的增强.  相似文献   

8.
AZ31镁合金不同温度挤压后组织性能研究   总被引:7,自引:1,他引:6  
研究不同模具温度挤压变形对细晶AZ31镁合金力学性能和织构演变的影响.结果表明,挤压变形显著地细化AZ31镁合金的晶粒,大幅度地提高了材料的抗拉强度和屈服强度,而材料的延伸率变化不大.室温挤压时,材料的抗拉强度和屈服强度分别为322和233 MPa,延伸率为21%.随着模具温度的升高,变形后材料组织中的大角度晶界所占的比例逐渐变大,表明挤压过程中的动态再结晶越来越充分.挤压变形后,形成{0002}基面环形织构,织构强度较原始状态显著减弱.通过综合分析材料的力学性能以及织构分布,发现AZ31镁合金的力学性能取决于材料的晶粒大小与织构分布.  相似文献   

9.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

10.
对超声细化和未细化的AZ31镁合金棒料进行均匀化退火后热挤压,并对热挤压后的组织和硬度进行了对比分析。结果表明,与未经过晶粒细化处理棒料的热挤压组织相比,预先经过晶粒细化处理的AZ31镁合金棒热挤压组织更加均匀。当挤压比λ为16、挤压料温度为380℃、挤压速度为0.9 m/min时,组织发生回复再结晶。与未经晶粒细化处理棒料的挤压组织相比,经过晶粒细化处理的挤压组织更加细小;挤压速度增加到10 m/min时,经过晶粒细化处理后的AZ31镁合金挤压变形后棒料边缘容易发生二次再结晶现象,形成一条宽约75μm的粗晶组织,边缘附近区域组织中有孪晶形成。同时,经过晶粒细化处理后的AZ31镁合金挤压棒的硬度较高。  相似文献   

11.
塑性变形对AZ31镁合金晶粒细化的影响   总被引:2,自引:1,他引:1  
利用6300kN液压机通过挤压的方法研究了塑性变形对AZ31镁合金晶粒细化的影响.实验表明:挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能;随挤压比的增大,晶粒细化程度增加,金属的协调变形能力增加,塑性增加;并且通过适当控制成形温度,平均品粒直径可控制在3~5μm之内.  相似文献   

12.
研究了AZ31镁合金组织的演变过程和力学性能,结果表明:通过挤压变形及动态再结晶,可以显著细化合金晶粒,其尺寸可由约100μm减少到5μm;二次变形可以提高镁合金的抗拉强度。可见塑性变形是同时实现镁合金构件成形和强韧化的有效途径。  相似文献   

13.
AZ31镁合金的热模拟和挤压   总被引:2,自引:2,他引:0  
采用Gleeble-1500D材料热模拟实验机、630T挤压机和金相显微镜研究了在塑性变形中挤压变形对AZ31镁合金管材微观组织的影响规律,在挤压之前对镁合金铸锭进行了均匀化处理.研究结果表明:AZ31镁合金热挤压时发生了动态再结晶,材料组织比铸态时细化;随挤压比的增大,晶粒细化程度增加,平均晶粒尺寸为19~37μm.  相似文献   

14.
采用循环扩挤(cyclic expansion-extrusion,CEE)变形工艺挤压AZ80镁合金并借助金相组织观察、拉伸性能测试和EBSD研究了多道次挤压对该合金的组织与性能影响。结果表明:AZ80镁合金经过CEE变形后,晶粒的尺寸随着挤压道次的增加而减小,4道次挤压后,晶粒尺寸细化至2μm,整体分布均匀且呈等轴晶,但是晶粒的细化程度并不是一直随挤压道次的增加而提高,2道次挤压后,随着挤压道次的增加,晶粒的细化程度减慢;镁合金CEE变形后的抗拉强度、屈服强度和伸长率均随挤压道次的增加而不断提高;CEE变形的细化机制是连续动态再结晶。  相似文献   

15.
对AZ31镁合金挤压棒材在循环扭转变形过程中的力学性能和织构演化进行了研究。循环扭转变形分别在298,373,443,503和573 K下进行。镁合金循环变形的力学性能测试结果表明,循环扭转变形过程的应力应变滞回线呈现严格的对称性,意味着微观变形模式以滑移为主。变形过程的热效应使应力应变曲线中的峰值应力随着周期数的增加而降低。变形过程中柱面滑移系启动使晶粒取向发生改变,由变形前的{11■0}⊥ED织构转变为变形后的{10■0}⊥ED织构,变形过程中拉伸孪晶启动使晶粒取向产生两种变化。  相似文献   

16.
等通道转角挤压镁合金的微观组织和力学性能   总被引:3,自引:1,他引:2  
采用自制的90°模具,分析不同的ECAP挤压路径对AZ31镁合金变形后的微观组织和力学性能的影响;对挤压后的试样进行显微组织观察、硬度测试,研究等通道挤压工艺(ECAP)对AZ31镁合金的晶粒细化效果.结果表明:Bc路径晶粒细化效果较好,随着挤压道次增加,晶粒发生细化,7道次后晶粒尺寸由原来的70μm细化到4.8μm左右;硬度值随道次增加显著提高,3道次后达到最大值90.81MPa,之后随道次增加,硬度略有下降,趋于稳定.  相似文献   

17.
挤出和退火工艺对AZ31镁合金组织和织构的影响   总被引:1,自引:0,他引:1  
研究了挤压比、挤压温度及电场退火对AZ31镁合金组织和织构的影响。结果表明:挤压比达到16时动态再结晶基本完成,挤压比为25时形成平均晶粒尺寸为7.3μm的均匀组织;随着挤压比由小到大,以{01^-10}面织构为代表的变形织构由增强到减弱;而{02^-21}、{12^-3^-1}面的再结晶织构由弱到强;提高挤压温度,有利于合金元素扩散和动态再结晶,阻碍低温析出物Mg17Al12和MnAl的不连续析出,组织趋于均匀,织构组分由低温变形的{01^-10}面织构向高温变形的{06^-61}面织构转变;电场退火推迟了再结晶进程因而抑制再结晶晶粒长大,增加了退火织构的漫散度。  相似文献   

18.
镁合金AZ31常温下的塑性变形行为   总被引:7,自引:2,他引:7  
通过挤压制取镁合金A231镁合金板坯,常温下进行轧制,研究其塑性变形行为。考察了镁合金AZ31组织和轧制工艺参数对其常温下塑性变形能力的影响。结果表明,晶粒度和道次加工率是影响镁合金AZ31常温塑性变形能力的重要因素。当挤压板坯晶粒度为10μm时,板材轧制变形由脆性转变为塑性。总加工率越大,晶粒越细,塑性越好。合理分配道次加工率可使总加工率增大。  相似文献   

19.
以挤压态AZ31镁合金棒材为原材料,在室温下沿着∥ED和⊥ED的方向进行预变形实验,模拟二辊皮尔格冷轧过程中减壁段横截面瞬时变形应力状态,接着对预变形试样取样进行二次压缩,利用电子背散射衍射(EBSD)对2次变形之后的微观结构进行表征。研究了应变路径变化情况下组织和织构对力学行为的影响。结果表明,预变形使AZ31镁合金的屈服强度提高,其主要原因是预变形产生的拉伸孪晶导致晶粒细化和位错密度增加。并且孪晶的出现会改变晶粒的取向,基面织构弱化(或孪生织构增强)在改善AZ31镁合金力学性能方面可能起到更重要的作用。∥ED-3%和⊥ED-3%试样的屈服强度分别提高了66.7%和6.6%。  相似文献   

20.
变形参数对AZ31镁合金组织性能的影响   总被引:8,自引:6,他引:8  
对AZ31镁合金铸棒在不同变形温度和变形程度下的再结晶行为进行了观察,并测量了各变形条件下的拉伸性能。结果表明,挤压变形及动态再结晶,可以显著的细化铸造AZ31合金的晶粒(由铸态的约100μm减少到约5μm)。随变形温度的升高,AZ31合金的抗拉强度下降,到一定温度后,趋于稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号