共查询到20条相似文献,搜索用时 0 毫秒
1.
Repeated morphine treatments result in sensitization, an increase in the efficacy of morphine to stimulate locomotor activity. study examined the effects of increasing serotonin (5-hydroxytryptamine, 5-HT) transmission on morphine-sensitization. For five days rats were administered saline or 5.0 mg/kg fluoxetine prior to treatment with saline or 5.0 mg/kg morphine. Twenty-one days later, rats were tested for their locomotor response to 2.0 mg/kg morphine. Fluoxetine treatment attenuated the locomotor activating effect of acute morphine treatments and blocked the sensitized response to the morphine challenge. These results indicate that increased 5-HT transmission attenuates the locomotor stimulating effects of morphine and prevents the development of morphine-sensitization. 相似文献
2.
Y Fukuta M Yoshizumi T Kitagawa T Hori I Katoh H Houchi T Tamaki 《Canadian Metallurgical Quarterly》1998,55(4):481-487
Facial immersion testing in cold water (< 4 degrees C) was performed to study the responses of sinus cycle length to increased parasympathetic tone before and 5 min after exercise testing in 27 children. There were no episodes of sinus arrest or extrasystole during the facial immersion testing. The resting sinus cycle lengths were significantly shorter after (539 +/- 68 msec) than before (597 +/- 96 msec) exercise testing (p < 0.001). The maximal sinus cycle lengths before and after exercise testing during cold water facial immersion testing did not differ significantly (928 +/- 167 msec and 909 +/- 128 msec, respectively). Vagal chronotropic responses were calculated from the control sinus cycle lengths and the maximal sinus cycle lengths during facial immersion testing. Facial immersion caused greater prolongation of sinus cycle length after than before exercise (73 +/- 27% and 54 +/- 26%, respectively; p < 0.005). We speculate that this augmentation of vagal activity represents accentuated antagonism in these children, i.e., the same parasympathetic stimulus causes a greater response in the presence of a stronger background sympathetic activity. 相似文献
3.
SM Pulido AC Passaquin WJ Leijendekker C Challet T Wallimann UT Rüegg 《Canadian Metallurgical Quarterly》1998,439(3):357-362
Rapid review, digital recording, on-line quantification, and three-dimensional reconstruction are all essential in the evaluation of intracoronary ultrasound images during coronary interventions. We describe a low-cost method that offers all these necessary features. The proposed method uses the QuickTime compatible video digitizers of standard multimedia Apple Macintosh or PowerPC desktop computers and the freeware software Object Image 1.60. 相似文献
4.
Transient activation of COS-1 cell phospholipase-D (PLD) in response to the protein kinase C (PKC) agonist tetradecanoyl phorbol acetate (TPA) was demonstrated by monitoring the ethanol-dependent accumulation of phosphatidylethanol (PtdEth). Transfection of COS-1 cells with PKC-alpha (wild type and constitutively activated mutants) produced no detectable ptdEth on incubation of transfected cells in the presence of ethanol. However, the response of transfected cells to subsequent TPA stimulation was inhibited, consistent with a role for the PKC-alpha in the suppression of PLD activity. 相似文献
5.
R Kyo N Nakahata I Sakakibara M Kubo Y Ohizumi 《Canadian Metallurgical Quarterly》1998,21(10):1067-1071
Glial cells have a role in maintaining the function of neural cells. This study was undertaken to clarify the effects of baicalin and baicalein, flavonoids isolated from an important medicinal plant Scutellariae Radix (the root of Scutellaria baicalensis Georgi), on glial cell function using C6 rat glioma cells. Baicalin and baicalein caused concentration-dependent inhibition of a histamine-induced increase in intracellular Ca2+ concentrations ([Ca2+]i). The potency of baicalein was significantly greater than that of baicalin. The noradrenaline- and carbachol-induced increase in [Ca2+]i was also inhibited by baicalein and both drugs inhibited histamine-induced accumulation of total [3H]inositol phosphates, consistent with their inhibition of the increase in [Ca2+]i. These results suggest that baicalin and baicalein inhibit [Ca2+]i elevation by reducing phospholipase C activity. The inhibitory effects of baicalin and baicalein on [Ca2+]i elevation might be important in the interpretation of their pharmacological action on glial cells, such as inhibition of Ca2(+)-required enzyme phospholipase A2. 相似文献
6.
T Itoh K Takahata K Morimoto N Iwamoto H Ohde 《Canadian Metallurgical Quarterly》1998,50(12):1093-1099
The effects of Selegiline hydrochloride (Selegiline HCl) on the intracellular Ca2+ contents of primarily cultured rat striatal, mesencephalic neuronal cells and PC-12 cells were examined by the use of a Ca2+ imaging analyzer. In the former two cell types, Selegiline HCl (10(-5)-10(-6) M) induced a transient inflow of extracellular Ca2+ through the voltage-dependent N-type Ca2+ channel. In addition, all cells indicating an increase in the intracellular Ca2+ content were found to be catecholaminergic neurons which showed a positive reaction with anti-tyrosine hydroxylase antibodies. Furthermore, a transient intracellular influx of Ca2+ was observed in the NGF-pretreated PC-12 cells. From these results, it is suggested that Selegiline HCl elicits various functions, including antioxidation, activation of neurotrophic factor biosynthesis and neuronal protection probably via an unidentified specific proteins of tyrosine hydroxylase-positive neurons. 相似文献
7.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at -60 mV, ANG II (10 microM) or ATP (100 microM) induced an oscillatory inward current. Caffeine (5 mM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl- ions (Ecl = -2.1 mV) and was shifted towards more positive values in low-Cl- solutions. Niflumic acid (10-50 microM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i. Niflumic acid (25 microM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 microM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 microM) or nifedipine (1 microM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3-mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade. 相似文献
8.
Numerous studies have shown that the developing tip of a neurite, the growth cone, can respond to environmental cues with behaviors such as guidance or collapse. To assess whether a given cell type can use more than one second-messenger pathway for a single behavior, we compared the influence of two well-characterized guidance cues on growth cones of chick temporal retinal ganglion cells. The first cue was the repulsive activity derived from the posterior optic tectum (p-membranes), and the second was the collapse-inducing activity derived from oligodendrocytes known as NI35/NI250. p-Membranes caused permanent growth cone collapse with no recovery after several hours, while NI35 caused transient collapse followed by recovery after about 10 min. The p-membrane-induced collapse was found to be Ca2+ independent, as shown using the Ca2+-sensitive dye Fura-2 and by the persistence of collapse in Ca2+-free medium. Dantrolene, a blocker of the ryanodine receptor, had only a minor effect on the collapse frequency caused by p-membranes. In contrast, the NI35-induced collapse was clearly Ca2+ dependent. [Ca2+]i increased sevenfold preceding collapse, and both dantrolene and antibodies against NI35 significantly reduced both the Ca2+ increase and the collapse frequency. Thus, even in a single cell type, growth cone collapse induced by two different signals can be mediated by two different second-messenger systems. 相似文献
9.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
The antiallergic drugs astemizole and norastemizole inhibit exocytosis in mast cells, which might be relevant for their therapeutic action. From previous studies, it appeared that the drugs inhibited 45Ca2+ influx. Here, we present a more detailed study on the effects of astemizole and norastemizole on Ca2+ fluxes. Fura-2-loaded rat basophilic leukemia (RBL-2H3) cells were activated through the high-affinity receptor for IgE (FcepsilonRI) with antigen or by the endoplasmatic reticulum ATPase inhibitor thapsigargin, bypassing direct FcepsilonRI-related events. It appeared that astemizole (>15 microM), in contrast to norastemizole, showed a dual effect on intracellular calcium concentration ([Ca2+]i): a rise in intracellular calcium concentration was induced, which originated in the release of intracellular Ca2+ stores, whereas Ca2+ influx via store-operated Ca2+ (SOC) channels was inhibited. Ca2+ influx was further characterized using Ba2+ influx, whereas processes in the absence of Ca2+ influx were studied using Ni2+ or EGTA. It was concluded that the drugs most likely affect the store-operated Ca2+ channels in RBL cells directly. The two effects of astemizole on Ca2+ fluxes had opposing influences on exocytosis, thereby accounting for the biphasic effect of increasing astemizole concentration on mediator release in RBL cells. 相似文献
11.
Ca2+-dependent vesicular fusion was studied in single whole-cell patch-clamped rat basophilic leukemia (RBL) cells using the capacitance technique. Dialysis of the cells with 10 microM free Ca2+ and 300 microM guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma-S]) resulted in prominent capacitance increases. However, dialysis with either Ca2+ (225 nM to 10 microM) or GTP[gamma-S] alone failed to induce a capacitance change. Under conditions of weak Ca2+ buffering (0.1 mM EGTA), activation of Ca2+-release-activated Ca2+ (CRAC) channels by dialysis with inositol 1,4,5-trisphosphate (InsP3) failed to induce a capacitance increase even in the presence of GTP[gamma-S]. However, when Ca2+ATPases were inhibited by thapsigargin, InsP3 and GTP[gamma-S] led to a pronounced elevation in membrane capacitance. This increase was dependent on a rise in intracellular Ca2+ because it was abolished when cells were dialysed with a high level of EGTA (10 mM) in the recording pipette. The increase was also dependent on Ca2+ influx because it was effectively suppressed when external Ca2+ was removed. Our results demonstrate that ICRAC represents an important source of Ca2+ for triggering a secretory response. 相似文献
12.
After a brief presentation of the development of free walking interpreted as learning dynamical equilibrium, the problem of sensory integration in the process of walking development is discussed. A critical review of the role of vision in the development of posturo-locomotor task is presented, along with recent test results on the development of the vestibular system. A final section presents the development of head stabilization and coordination as a necessary means to assist sensory integration. It is suggested that if sensory information is necessary to enhance posturo-locomotor skills, a good mastery of walking is in turn necessary to increase the efficiency of sensory integration. 相似文献
13.
BACKGROUND: Our objective was to elucidate the direct effects of fentanyl and morphine on cardiac excitation-contraction coupling using individual, field-stimulated rat ventricular myocytes. METHODS: Freshly isolated myocytes were loaded with fura-2 and field stimulated (0.3 Hz) at 28 degrees C. Amplitude and timing of intracellular Ca2+ concentration (at a 340:380 ratio) and myocyte shortening (video edge detection) were monitored simultaneously in individual cells. Real time Ca2+ uptake into isolated sarcoplasmic reticulum vesicles was measured using fura-2 free acid in the extravesicular compartment. RESULTS: The authors studied 120 cells from 30 rat hearts. Fentanyl (30-1,000 nM) caused dose-dependent decreases in peak intracellular Ca2+ concentration and shortening, whereas morphine (3-100 microM) decreased shortening without a concomitant decrease in the Ca2+ transient. Fentanyl prolonged the time to peak and to 50% recovery for shortening and the Ca2+ transient, whereas morphine only prolonged the timing parameters for shortening. Morphine (100 microM), but not fentanyl (1 microM), decreased the amount of Ca2+ released from intracellular stores in response to caffeine in intact cells, and it inhibited the rate of Ca2+ uptake in isolated sarcoplasmic reticulum vesicles. Fentanyl and morphine both caused a downward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on the Ca2+ transient. CONCLUSIONS: Fentanyl and morphine directly depress cardiac excitation-contraction coupling at the cellular level. Fentanyl depresses myocardial contractility by decreasing the availability of intracellular Ca2+ and myofilament Ca2+ sensitivity. In contrast, morphine depresses myocardial contractility primarily by decreasing myofilament Ca2+ sensitivity. 相似文献
14.
Although fluctuations in cytosolic Ca2+ concentration have a crucial role in relaying intracellular messages in the cell, the dynamics of Ca2+ storage in and release from intracellular sequestering compartments remains poorly understood. The rapid release of stored Ca2+ requires large concentration gradients that had been thought to result from low-affinity buffering of Ca2+ by the polyanionic matrices within Ca2+-sequestering organelles. However, our results here show that resting luminal free Ca2+ concentration inside the endoplasmic reticulum and in the mucin granules remains at low levels (20-35 microM). But after stimulation, the free luminal [Ca2+] increases, undergoing large oscillations, leading to corresponding oscillations of Ca2+ release to the cytosol. These remarkable dynamics of luminal [Ca2+] result from a fast and highly cooperative Ca2+/K+ ion-exchange process rather than from Ca2+ transport into the lumen. This common paradigm for Ca2+ storage and release, found in two different Ca2+-sequestering organelles, requires the functional interaction of three molecular components: a polyanionic matrix that functions as a Ca2+/K+ ion exchanger, and two Ca2+-sensitive channels, one to import K+ into the Ca2+-sequestering compartments, the other to release Ca2+ to the cytosol. 相似文献
15.
The effects of the Anemonia sulcata toxin ATX II on action potentials and contractility of isolated papillary muscles and single myocytes from rat and guinea-pig hearts have been studied. ATX II prolonged the action potential in both rat and guinea-pig papillary muscle. Although it produced a positive inotropic effect in guinea-pig papillary muscle, it failed to do so in rat papillary muscle. However, in single rat and guinea-pig ventricular cells, it both prolonged the action potential and had a positive inotropic effect. We suggest that ATX II does not cause a positive inotropic effect in rat papillary muscle, because it induces Ca2+ overload. In single cells the positive inotropic effect was reduced by approximately 50% when the contractions were triggered by voltage clamp pulses of constant duration rather than by action potentials. This suggests that the inotropic effect of ATX II is in part the result of the prolongation of the action potential. The intracellular Na+ activity (a(i)Na) in single ventricular cells was measured with the Na(+)-sensitive fluorescent dye SBFI. After exposure of the cells to ATX II, a(i)Na was increased by a maximum of 1.9 +/- 0.3 and 2.2 +/- 0.3 mM in rat and guinea-pig cells, respectively. It is suggested that the positive inotropic effect of ATX II is also in part the result of the rise in a(i)Na. 相似文献
16.
We evaluated whether cartilage was a source of Ca2+ and the possible role of Ca2+ recycling in the sustained bronchial contraction (SBC) induced by carbachol (Cch) in Ca2+-free medium. Canine first-order bronchi were studied with cartilage and epithelium (+CAR + EPI) and without these structures individually (-CAR + EPI and +CAR - EPI) or together (-CAR - EPI). After cartilage removal (-CAR - EPI or -CAR + EPI) Cch produced a transient contraction in Ca2+-free medium. Removal of the epithelium alone had minor effects on the magnitude of the SBC but increased the effect of removal of cartilage to diminish the SBC. Bronchial strips with cartilage were able to respond to Cch with lower Ca2+ concentrations (10-100 microM) than could dissected preparations. Preincubation with BAY K 8644 (30-1000 nM) or 60 mM KCl or -CAR - EPI tissues converted the transient contractions to Cch in Ca2+-free medium to sustained contractions. In microelectrode studies, 50 nM Cch induced membrane oscillations in solutions with 2.5 mM Ca2+ in bronchial preparations, plus or minus cartilage, and in undissected tissues in Ca2+-free medium but not in -CAR - EPI tissues. Preincubation with 1 microM BAY K 8644 in Ca(2+)-free medium restored these oscillations in -CAR - EPI tissues. The release of 45Ca2+ from cartilage was too rapid to provide a reservoir of Ca2+ to support multiple SBCs in Ca2+-free medium. Moreover, in the Ca2+-free medium (with 10 nM Ca2+ after tissue +CAR + EPI incubation) excitatory junction potentials rapidly disappeared. Addition of 1 microM nifedipine or 1 mM EGTA during the SBC of +CAR + EPI tissues produced complete relaxation. A transient contraction to Cch occurred with prior addition of nifedipine. Inhibition of the sarcoplasmic reticulum Ca2+ pump by tissue incubation with cyclopiazonic acid (CPA; 10 microM), or briefly with 1 mM EGTA significantly diminished the SBC induced by Cch in Ca2+-free medium. CPA and EGTA together abolished the Cch-induced SBC. Thus, cartilage plays a more complex role than as a Ca2+ reservoir to support the SBC induced by Cch in Ca2+-free solution; its removal affects the process supporting SBCs involving intracellular Ca2+ storage and Ca2+ entrance through voltage-dependent channels. 相似文献
17.
H Llewelyn Roderick DH Llewellyn AK Campbell JM Kendall 《Canadian Metallurgical Quarterly》1998,24(4):253-262
Protein and energy metabolism in boars of different breeds, 10 each of Hampshire, Duroc and Danish Landrace was measured in balance and respiration experiments by means of indirect calorimetry in an open-air circulation system. Measurements were performed in four periods (Period I-IV) covering the body weight range from 25 to 100 kg. In order to achieve maximum protein retention (RP) a daily intake of digestible protein > 12 g/kg0.75 and metabolisable energy > 1100 kJ/kg0.75 was assumed to be necessary. Protein retention of Danish Landrace boars was inferior to that of Hampshire and Duroc boars in Periods III and IV, and therefore, 55 measurements on Hampshire and Duroc boars fulfilling the chosen criteria for digested protein and ME intake were used for calculation of maximum protein retention, giving the following significant quadratic relationship: RP [g/d] = 11.43.W0.75-0.144.W1.50 (n = 55, RSD = 15.2, CV = 9.2%, R2 = 0.851) with a summit of 227 g/d at 135 kg BW. In Period I, when BW was below 30 kg, 12 measurements fulfilled the chosen criterion for digested protein but not for ME, and these data were used comparatively. Protein retention of boars with a low ME intake in Period I was significantly below that of boars with a high ME intake (93 g/d vs. 107 g/d; P = 0.02). In summary, the present data have shown that boars of high genetic potential have capacity for maximum protein retention of about 230 g/d, and that there was a significant quadratic relationship between protein retention and metabolic body weight, indicating that maximum protein retention was not reached until 135 kg BW. Differences in capacity for protein retention were recorded between boars of different breeds, with Duroc and Hampshire boars being superior to Danish Landrace boars. Additionally, the crucial importance of a sufficient ME supply early in the growth period was underscored by a lower protein accretion rate of boars given a daily ME supply below 1100 kJ ME/kg0.75 at an approximate BW of 25 kg. 相似文献
18.
Intracellular Ca2+ concentration ([Ca2+]i) was measured by Fura 2/AM fluorescence imaging microscopy in freshly isolated valvular endothelial cells taken from female and male rats. The basal level of [Ca2+]i was significantly elevated in female valvular endothelial cells when compared to males (P < 0.05). Inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA, 10 microM) caused a greater increase in the [Ca2+]i in female than male endothelial cells. Removal of extracellular Ca2+ returned the [Ca2+]i to the basal level. The rate of [Ca2+]i decline was significantly slower in female endothelial cells compared to males. There were no differences in the unstimulated rate of Mn2+ quenching between two groups. These results demonstrate that estrogen affects NOS at least in part, by an alteration in Ca2+ homeostasis in endothelial cells. 相似文献
19.
Increase of empty pool-activated Ca2+ influx using an intracellular Ca2+ chelating agent 总被引:1,自引:0,他引:1
We demonstrate here that stimulated 45Ca2+ influx in A7r5 vascular smooth muscle cells induced either by receptor activation with [Arg]8 vasopressin or by the SR-Ca(2+)-ATPase inhibitor thapsigargin was increased more than threefold if cells were preloaded with the intracellular calcium chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). The increased influx is probably due to an attenuation of negative feedback of Ca2+ on its own entry accompanied by increased Ca2+ storage capacity of BAPTA-loaded cells leading to diminished cellular Ca2+ release. We propose that BAPTA preloading could be a useful approach to investigate receptor-induced Ca2+ influx. 相似文献
20.
Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 microM, for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 +/- 30 s, whereas recovery time was 216 +/- 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxyphenyl)hydrazone (FCCP; 750 nM). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 microM). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure. 相似文献