首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TlGa1 ? x Er x S2 (x = 0, 0.001, 0.005, 0.01) solid solutions, based on the layered compound TlGaS2, have been prepared by direct elemental synthesis. The effect of Er concentration on the dielectric and optical properties of the TlGa1 ? x Er x S2 solid solutions has been studied. The results demonstrate that increasing the Er content of the TlGa1 ? x Er x S2 solid solutions decreases the real part of their complex dielectric permittivity and increases their dielectric loss tangent. The conductivity (σ) of the TlGa1 ? x Er x S2 solid solutions in the frequency range f = 1 to 35 MHz exhibits σ ~ f 0.8 behavior, indicative of hopping charge transport through their band gap. We have evaluated the key parameters of this charge transport mechanism. We have studied temperature-dependent optical properties of the TlGa1 ? x Er x S2 solid solutions. At temperatures in the range T = 77–200 K, the TlGa0.999Er0.001S2 solid solution has an absorption band near its fundamental absorption edge, which is due to transitions to a direct exciton state.  相似文献   

4.
Inorganic Materials - A number of new intermetallic compounds of variable composition, RRuxGa1 – x(R = Er, Tm, Lu) and R2Ru1 – xIn1 + x (R = Dy, Ho, Er, Tm, Lu), whose structures belong...  相似文献   

5.
Despite a considerable effort aiming at elucidating the nature of ferromagnetism in ZnO-based magnetic semiconductor, its origin still remains debatable. Although the observation of above room temperature ferromagnetism has been reported frequently in the literature by magnetometry measurement, so far there has been no report on correlated ferromagnetism in magnetic, optical and electrical measurements. In this paper, we investigate systematically the structural, optical, magnetic and electrical properties of Zn1−x Co x O:Al thin films prepared by sputtering with x ranging from 0 to 0.33. We show that correlated ferromagnetism is present only in samples with x > 0.25. In contrast, samples with x < 0.2 exhibit weak ferromagnetism only in magnetometry measurement which is absent in optical and electrical measurements. We demonstrate, by systematic electrical transport studies that carrier localization indeed occurs below 20–50 K for samples with x < 0.2; however, this does not lead to the formation of ferromagnetic phase in these samples with an electron concentration in the range of 6 × 1019 cm−3 ∼1 × 1020 cm−3. Detailed structural and optical transmission spectroscopy analyses revealed that the anomalous Hall effect observed in samples with x > 0.25 is due to the formation of secondary phases and Co clusters.  相似文献   

6.
The crystalline structure, microstructure and dielectric properties of the (Sr1–1.5x Bi x )TiO3 (0 x 0.267) ceramics were studied. Cubic solid solutions were determined for x 0.2 at room temperature. However, lattice distortion was detected by Raman spectra. A dense microstructure with the grain sizes of 2–4 m was obtained for (Sr1–1.5x Bi x )TiO3 (0 x 0.2) ceramics. The Bi concentration was examined and found to be in agreement with the nominal composition and overall uniformly distributed in the sample. Different from the observations in the earlier literature for other doped quantum paraelectrics, where only an induced dielectric anomaly was reported, there are three Bi induced dielectric modes A, B, and C in the Bi doped SrTiO3 samples. The occurrence of the impurity modes and the ferroelectric relaxor mode and their evolution are demonstrated as a function of Bi concentration.  相似文献   

7.
Y3+ substituted mullite Y(x)Al(6?x)Si2O13 nanoparticles where x varied from 0.005 to 0.05 have been synthesized via co-precipitation technique. X-ray diffraction results revealed that orthorhombic mullite was the major phase in the samples of x = 0.0–0.025, whereas corundum α-Al2O3 was predominant at high Y3+-ion content of x = 0.05. Transmission electron microscope images showed orthorhombic-like structure for the pure sample. Meanwhile, the doped samples exhibited similar morphologies of larger particle sizes associated with small amount of glassy liquid phase. FT-IR spectrum evinced the formation of corundum particularly at high Y3+ ion content (5 %). The photoluminescence emission spectra were strongly affected by the Y3+ ion content. Moreover, mullite sample doped with 0.5 % Y3+ ion achieved the minimum electrical resistivity of 0.28 × 109 Ω cm and the minimum dielectric loss value of 0.37 in the radiowave frequency region (10 MHz) as well as the minimum dielectric loss value of 0.41 in the microwave frequency region (1 GHz).  相似文献   

8.
Polycrystalline La0.67(Ca1?x Sr x )0.33MnO3 with different substitution level of strontium element, were synthesized via solid state reaction. Structure of samples was characterized by X-ray diffraction (XRD). XRD patterns reveal that La0.67Ca0.33MnO3 exhibits orthorhombic structure with space group Pnma. Phase transitions from orthorhombic to rhombohedral take place as Ca ions were gradually substituted by Sr ions. The XRD data were further analyzed by Rietveld refinement technique. The data show that Mn–O–Mn bond angle increases as x increases. Microstructures obtained from SEM show that substitution of Sr ions has demoted the grain growth and densification process during sintering. The substitution of Sr ions has greatly influenced the hopping integral of electron via double exchange interaction, thus affecting the electrical properties and magnetic properties as well. The resistivity decreases and the metal–insulator transition temperature (T p ) shifts to higher temperature as x increases. The magnetoresistance (MR) effect gradually decreases and MR peak shifts to higher temperature as x increases. The magnetization measured at room temperature is found to be increasing as x increases.  相似文献   

9.
Journal of Materials Science: Materials in Electronics - In this research, the nanosized rare-earth orthoferrites (RFeO3) with R?=?Dy, Ho, Yb &amp; Lu were synthesized by...  相似文献   

10.
Barium strontium titanate (BST) Ba1?x Sr x TiO3 nanopowders have been successfully synthesized using oxalate precursor route. The effect of Sr2+ ion content from 0.3 to 0.7 on the crystal structure, crystallite size, microstructure, electrical and optical properties was systematically studied. The results revealed that well crystalline single BST phase was formed by annealing the oxalate precursor at 1,000 °C for 2 h. The crystallite size of the BST powders was decreased with increasing the Sr2+ ion molar ratios. The crystallite size was decreased from 56.0 to 33.1 nm when the Sr2+ ion content increased from 0.3 to 0.7. Additionally, the lattice parameter (a), unit cell volume and X-ray density of BST ware decreased whereas the porosity, % were increased with Sr2+ ion concentration. The BST phase appeared as cubic-like structure. The spectrophotometer measurement results demonstrated that the room temperature band gap energy varied with the Sr2+ ion composition x. The band gap energy was shifted to low energy and it was decreased from 3.6 to 3.2 eV with increasing the Sr2+ ion content from 0.3 to 0.7. Moreover, the DC resistivity was enhanced with increasing the Sr2+ ion ratio. The dielectric response obtained for the stressed samples corresponds to a true resonance rather than a dispersion process with a characteristic frequency around 1 GHz at room temperature. However, the peaks commonly observed at GHz frequency were changed with varying the Sr2+ ion composition. The high imaginary components of dielectric permittivity for x = 0.3 was found at higher frequency region around 1.6 GHz compared with the samples with x values of 0.5 and 0.7 in which the frequency regions were around 1.25 and 1.15 GHz, respectively.  相似文献   

11.

In the present work, we reported the structural, electrical, and magnetic properties of erbium Er3+-substituted Cu–Cd nano-ferrites with generalized formula Cu0.8Cd0.2ErxFe2?xO4 (where x?=?0.000, 0.0010, 0.0015, 0.002, 0.0025, 0.003), as synthesized by the Citrate-Gel Auto-Combustion. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies were carried out to investigate their microstructural and surface morphology. The XRD measurements confirm pure cubic spinel phase composition of these nanoparticles. The crystallite size ranges over 9.22–19.22 nm and it reduces with the increase in erbium Er3+ concentration from 0.000 to 0.003. The vibration properties were carried out by using FTIR spectrometer. The two probe measurements were used to determine DC resistivity, Curie temperature, and DC conductivity. The plot between DC electrical resistivity and temperature indicates the semiconductor behavior. At room temperature, the vibrating sample magnetometer (VSM) was used to investigate magnetic properties, and the observed values revealed the ferrimagnetic behavior with high saturation magnetization (34.24 emu/g) and high coercivity (1121.70 Oe).

  相似文献   

12.
The synthesis of BaLn2(1?x)ZnO5:2xTb3+ (Ln = Y, Gd) nanophosphors using solution combustion method with an aim to study the effect of sintering temperature and Tb3+ ions concentration on the luminescent properties has been investigated. Under UV excitation, BaY2(1?x)ZnO5 and BaGd2(1?x)ZnO5 nanoparticles exhibit apparent characteristic green emission from 5D4 state to 7F6?3 states of Tb3+ ions with the strongest at 544 nm. Luminescence concentration quenching could be observed when the Tb3+ ions contents were more than 4 mol% in both nanophosphors. The luminescence decay curves suggest monoexponential behavior of both nanophosphors. X-ray diffraction results confirmed the single-phased orthorhombic structure of both powders belonging to space group Pbnm. TEM analysis indicates the spherical morphology of nanoparticles with average grain size in the range of 85–95 nm. BaY2(1?x)Tb2x ZnO5 and BaGd2(1?x)Tb2x ZnO5 nanophosphors may have potential applications in field emission displays based on their uniform shape, low-cost synthetic route, and diverse luminescent properties.  相似文献   

13.
(BaTiO3)1 ? x (K0.5Bi0.5TiO3) x solid solutions exhibiting positive temperature coefficient of resistance behavior have been prepared using BaTiO3 presynthesized through oxalate coprecipitation. The peak in their dielectric permittivity has been shown to shift to higher temperatures (above 120°C) with increasing x. We have examined the effect of K0.5Bi0.5TiO3 content on the microstructure of the (BaTiO3)1 ? x (K0.5Bi0.5TiO3) x solid solutions. The results demonstrate that, with increasing x, both the minimum and maximum resistivities of the materials in the temperature range of their positive temperature coefficient of resistance behavior increase. The materials prepared using barium titanate presynthesized by the oxalate route have higher Curie temperatures and temperatures where they exhibit positive temperature coefficient of resistance behavior and lower minimum resistivities than do the materials prepared by solid-state reactions.  相似文献   

14.
Cd1?xZnxS nanoparticles for Zn = 0–30 % were successfully synthesized by a conventional chemical co-precipitation method at room temperature. X-ray diffraction spectra confirmed the pure zinc blend cubic structure of undoped CdS; but Zn-doping on Cd–S matrix induced the mixed phases of cubic and hexagonal structure. The reduced crystal size, d-value, cell parameters and higher micro-strain at lower Zn concentration were due to the distortion produced by Zn2+ in Cd–S lattice. The enhancing diffraction intensity at lower Zn concentrations was due to the substitution of Zn2+ ions instead of Cd2+ ions whereas the reduced intensity after 20 % was due to the presence of Zn2+ ions both as substitutionally and interstitially in Cd–S lattice. The nominal stoichiometry and chemical purity was confirmed by energy dispersive X-ray analysis. The initial blue shift of energy gap from undoped CdS (3.75 eV) to Zn = 10 % (3.82 eV) was due to the size effect and also the incorporation of Zn2+ in the Cd–S lattice. The observed red shift of energy gap at higher Zn concentrations could be attributed to the improved crystallinity. The band gap tailoring was useful to design a suitable window material in fabrication for solar cells and other opto-electronic devices. The characteristic IR peaks around 617–619 cm?1 and the reduced intensity by Zn-doping confirmed the presence of Zn in Cd–S lattice.  相似文献   

15.
The heat capacity of single crystals of the Ca1 ? x Er x F2 + x (x = 0.05, 0.10) and Ca0.95Yb0.05F2.05 fluorite solid solutions was determined by adiabatic calorimetry in the temperature range 55–300 K. The results were used to obtain temperature dependences of the Debye characteristic temperature, entropy, and enthalpy for the solid solutions.  相似文献   

16.
We have studied the electrochemical, optical, and magnetic properties of nickel-intercalated InSe single crystals. The energy position of the excitonic maximum and the full width at half maximum of the excitonic band in the Ni x InSe intercalation compounds have been shown to be nonmonotonic functions of nickel concentration. Nickel-intercalated InSe possesses ferromagnetic properties: the dependence of its magnetic moment on magnetic field has the form of a hysteresis loop, characteristic of hard-magnetic ferromagnets.  相似文献   

17.
The Ca2?x Sm x MnO4 (x=0?C0.4) compounds were synthesized by a solid?Csolid method and characterized by XRD at room temperature. The XRD profiles were indexed with a tetragonal structure (I/4mmm space group) for x??0.3 and orthorhombic one (Pnma space group) for x=0.4. The magnetic measurements were studied as a function of temperature (T=2?C300?K) and applied field (?? 0 H=0?C10?T). When the temperature decreases, each compound has shown first a ferromagnetic?Cparamagnetic (FM?CPM) transition and then an antiferromagnetic?Cferromagnetic (AFM?CFM) one. The transition temperatures are found to be Sm-doping dependent. For all compounds, a spin-glass phenomenon is evidenced by FC/ZFC magnetization curves.  相似文献   

18.
19.
We have synthesized Y0.5Ca0.5BaCo4 ? x Zn x O7 (x = 0, 1.0) solid solutions using solid-state reactions and a glycine-nitrate route and investigated their crystal structure, microstructure, and thermal behavior in an oxygen atmosphere. The effect of Zn on the magnetic behavior of the Y0.5Ca0.5BaCo3ZnO7 cobaltite has been examined.  相似文献   

20.
The magnetocrystalline anisotropies of RFe10V2 (R=Y, Tb, Dy, Ho and Er) and their hydrides were studied by X-ray diffraction, magnetization and a.c. susceptibility measurements. The uniaxial anisotropy of Fe-sublattice and R-sublattice with positive second order Stevens αJ in RFe10V2 compounds is weakened by hydrogenation, while that of R-sublattice with negative αJ (Er) enhanced. Such a change of anisotropy causes planar-easy magnetic structures in RFe10V2 (R=Tb and Dy) at room temperature and induces spin reorientation in HoFe10V2 after hydrogenation. The change of anisotropy of R-sublattice after hydrogenation may be owed to a decrease of the second order crystalline coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号