首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A chiral dinuclear zinc complex can effectively catalyse the direct aldol reactions of pyruvic acid ester with various chiral sugar aldehydes, thus functionally mimicking the pyruvate‐dependent type II aldolases. Application of sterically hindered aryl esters allows for the elusive aldol reaction of the pyruvate donor with controlled anti‐selectivity en route to the short and efficient synthesis of 3‐deoxy‐2‐ulosonic acids. Pyruvic acid ester is here used as a chemical equivalent of phosphoenol pyruvate (PEP) in imitation of the synthetic principle used in nature. The presented biomimetic methodologies use enol formation for the highly efficient and flexible formation of various C6–C9 ulosonic acids. Particularly, efficient and concise syntheses of 3‐deoxy‐D ‐erythro‐hex‐2‐ulosonic acid (KDG, overall 50% yield), 3‐deoxy‐D ‐ribo‐hept‐2‐ulosonic acid (DRH, overall 53% yield) and 3‐deoxy‐D ‐glycero‐D ‐talo‐non‐2‐ulosonic acid (4‐epi‐KDN, overall 78% yield) are described. This direct efficient application of pyruvic esters does not require additional demasking steps and thus surpassess previously methodologies utilising masked pyruvic synthons such 2‐acetylthiazole and pyruvic aldehyde dimethyl acetal.

  相似文献   


2.
A search for the large‐scale preparation of (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoates ( 2 ) – a key intermediate in the synthesis of pharmacologially important statins – starting from (S)‐malic acid is described. The synthesis of the required initial compound methyl (3S)‐3,4‐(isopropylidenedioxy)butanoate ( 1 ) by Moriwake’s reduction of dimethyl (S)‐malate ( 3 ) has been improved. Direct 2‐C chain elongation of ester 1 using the lithium enolate of tert‐butyl acetate has been shown to be successful at a 3‐ to 5‐fold excess of the enolate. Unfortunately, the product, tert‐butyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2a ) is unstable during distillation. Ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2b ) was prepared alternatively on a multigram scale from (3S)‐3,4‐(isopropylidenedioxy)butanoic acid ( 7 ) by activation with N,N′‐carbonyldiimidazole and subsequent reaction with Mg(OOCCH2COOEt)2. A convenient pathway for the in situ preparation of the latter is also described. Ethyl ester ( 2b ) can be advantageously purified by distillation. The stereochemistry of the catalytic hydrogenation of β‐keto ester ( 2b ) to ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐hydrohyhexanoate (syn‐ 6 and anti‐ 6 ) has been studied using a number of homogeneous achiral and chiral Rh(I) and Ru(II) complexes with phosphine ligands. A comparison of Rh(I) and Ru(II) catalysts with (S)‐ and (R)‐BINAP as chiral ligands revealed opposite activity in dependence on the polarity of the solvent. No influence of the chiral backbone of substrate 2b on the enantioselectivity was noted. A ratio of syn‐ 6 /anti‐ 6 =2.3 was observed with an achiral (Ph3P)3RuCl2 catalyst. Ru[(R)‐Tol‐BINAP]Cl2 neutralized with one equivalent of AcONa afforded the most efficient catalytic system for the production of optically pure syn‐(5S)‐5,6‐isopropylidenedioxy‐3‐hydroxyhexanoate (syn‐ 6 ) at a preparative substrate/catalyst ratio of 1000:1.  相似文献   

3.
A more practical and efficient catalytic asymmetric chlorolactonization of styrene‐type carboxylic acids with 1,3‐dichloro‐5,5‐dimethylhydantoin (DCDMH) using C3‐symmetric cinchonine‐squaramide (CSCS) as organocatalyst has been developed. A series of chiral chloro‐substituted isochroman‐1‐ones was obtained in excellent yields (up to 95%) and enantioselectivities (up to 99% ee), whwereby the results for chloro‐substituted isochroman‐1‐ones are the best ever achieved. The catalyst can be recovered and reused for six cycles. Moreover, the chlorolactonization product 3b was further transformed to optically active bicyclic isochroman‐1‐one derivatives in high yield without losing the enantioselectivity. Furthermore, compounds 3e and 2n proved to be highly potent inhibitors of the HIV‐1 in TZM‐bl cells.

  相似文献   


4.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

5.
Catalytic asymmetric conjugate arylation of racemic 6‐substituted cyclohexenones with arylboronic acids was catalyzed by 3 mol % of chiral amidophosphane‐[RhCl(C2H4)]2 in a 10:1 mixture of 1,4‐dioxane and water at 70 °C to afford a nearly 1:1 mixture of trans‐ and cis‐5‐aryl‐2‐substituted cyclohexanones in high enantioselectivity, which was subsequently epimerized with sodium ethoxide in ethanol to give thermodynamically stable trans‐5‐aryl‐2‐substituted cyclohexanones with 99–97 % ee in high two‐step yields.  相似文献   

6.
BACKGROUND: Traditional treatment systems failed to achieve efficient degradation of anthraquinone dye intermediates at high loading. Thus, an airlift internal loop reactor (AILR) in combination with the TiO2‐photocatalytic ozonation (TiO2/UV/O3) process was investigated for the degradaton of 1‐amino‐ 4‐bromoanthraquinone‐2‐ sulfonic acid (ABAS). RESULTS: The AILR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as biocarrier, could run steadily for 4 months at 1000 mg L?1 of the influent ABAS. The efficiencies of ABAS decolorization and chemical oxygen demand (COD) removal in AILR reached about 90% and 50% in 12 h, respectively. However, when the influent ABAS concentration was further increased, a yellow intermediate with maximum absorbance at 447 nm appeared in AILR, resulting in the decrease of the decolorization and COD removal efficiencies. Advanced treatment of AILR effluent indicated that TiO2/UV/O3 process more significantly improved the mineralization rate of ABAS bio‐decolorization products with over 90% TOC removal efficiency, compared with O3, TiO2/UV and UV/O3 processes. Furthermore, the release efficiencies of Br? and SO42? could reach 84.5% and 80.2% during TiO2/UV/O3 treatment, respectively, when 91.5% TOC removal was achieved in 2 h. CONCLUSION: The combination of AILR and TiO2/UV/O3 was an economic and efficient system for the treatment of ABAS wastewater. © 2012 Society of Chemical Industry  相似文献   

7.
(2′S)‐2′‐Deoxy‐2′‐C‐methyluridine and (2′R)‐2′‐deoxy‐2′‐C‐methyluridine were incorporated in the 3′‐overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine was incorporated in the 6‐position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3′‐overhang region by (2′S)‐ or (2′R)‐2′‐deoxy‐2′‐C‐methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.  相似文献   

8.
The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl‐CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C10–14 fatty acyl‐CoA unit, one malonyl‐CoA unit and two methylmalonyl‐CoA units. We identified these products as 4‐hydroxy‐3‐methyl‐6‐(1‐methyl‐2‐oxoalkyl)pyran‐2‐ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl‐CoA as the extender substrate. In addition, in vitro reactions with 13C‐labeled malonyl‐CoA revealed that RpsA produced tetraketide 6‐alkyl‐4‐hydroxy‐1,5‐dimethyl‐2‐oxocyclohexa‐3,5‐diene‐1‐carboxylic acids from C14–20 fatty acyl‐CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family.  相似文献   

9.
A facile and efficient method for the quantitative synthesis of [CpRu(IV)(π‐C3H5)(2‐quinolinecarboxylato)]PF6 from [CpRu(CH3CN)3]PF6, 2‐quinolinecarboxylic acid, and 2‐propen‐1‐ol has been established. The cationic Ru(IV) complex is air‐ and moisture‐stable, and can be stored in a vial for at least six months. This complex realizes a simple and easy operation for both the deallylation of allyl ethers in methanol and the dehydrative allylation of alcohols. Furthermore, with removal of the volatile allyl methyl ether co‐product from the reaction system, the robust catalyst can attain a turnover of 10000 cycles of allyl ether cleavage.  相似文献   

10.
Cellular DNA continuously suffers various types of damage, and unrepaired damage increases disease progression risk. 8‐Oxo‐2′‐deoxyguanine (8‐oxo‐dG) is excised by repair enzymes, and their analogues are of interest as inhibitors and as bioprobes for study of these enzymes. We have developed 8‐halogenated‐7‐deaza‐2′‐deoxyguanosine derivatives that resemble 8‐oxo‐dG in that they adopt the syn conformation. In this study, we investigated their effects on Fpg (formamidopyrimidine DNA glycosylase) and hOGG1 (human 8‐oxoguanine DNA N‐glycosylase 1). Relative to 8‐oxo‐dG, Cl‐ and Br‐deaza‐dG were good substrates for Fpg, whereas they were less efficient substrates for hOGG1. Kinetics and binding experiments indicated that, although hOGG1 effectively binds Cl‐ and Br‐deaza‐dG analogues with low Km values, their lower kcat values result in low glycosylase activities. The benefits of the high binding affinities and low reactivities of 8‐oxo‐dG analogues with hOGG1 have been successfully applied to the competitive inhibition of the excision of 8‐oxoguanine from duplex DNA by hOGG1.  相似文献   

11.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

12.
An efficient palladium‐catalyzed synthesis of 3‐arylpyrazolo[1,5‐a]pyrimidines has been investigated. The key step in the synthesis is a Suzuki biaryl coupling of 3‐bromo‐2,5‐dimethyl‐7‐aminopyrazolo[1,5‐a]pyrimidines with arylboronic acids to provide 3‐arylpyrazolo[1,5‐a]pyrimidines in moderate to good yield. The synthetic utility of this methodology has been demonstrated by a concise and convergent synthesis of R121920, a potent CRHR1 antagonist recently undergoing clinical evaluations.  相似文献   

13.
A novel monomer, 2,6‐di(thiophene‐2‐yl)‐3,5bis(4‐(thiophene‐2‐yl)phenyl)dithieno[3,2‐b;2',3'‐d]thiophene ( Th4DTT) has been synthesized and used as an electro‐active material. It has been electropolymerized onto glassy carbon (GC) electrode in sodium dodecyl sulfate (SDS) solution (0.1 M) together with multi‐walled carbon nanotubes (MWCNT). A good capacitive characteristics for P(Th4DTT)/MWCNT composite has been obtained by electrochemical impedance spectroscopy (EIS), which is, to our best knowledge, the first report on capacitor behavior of a dithienothiophene. A synergistic effect has been resolved by Nyquist, Bode‐magnitude—phase and admittance plots. Specific capacitance of the conducting polymer/MWCNT, calculated from cyclic voltammogram (CV) together with area and charge formulas, has been found to be 20.17 F g?1. Long‐term stability of the capacitor has also been tested by CV, and the results indicated that, after 500 cycles, the specific capacitance is 87.37% of the initial capacitance. An equivalent circuit model of Rs(C1(R1(Q(R2W))))(C2R3) has been obtained to fit the experimental and theoretical data. The double layer capacitance (Cdl) value of P(Th4DTT)/MWCNT (4.43 mF cm?2) has been found to be 25 times higher than P(Th4DTT) (Cdl= 0.18 mF cm?2). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40061.  相似文献   

14.
Synthesis of Potential Plant Protecting Compounds on the Basis of 2,3‐Dihydrothiazol‐2‐thione. II: Structural Variations Derived from a C 4 ‐Carbaldehyde Function 2‐Thioxo‐3‐(3‐trifluormethylphenyl)‐2,3‐dihydrothiazol‐ 4‐carbaldehyde ( 2 ) has been prepared from the corresponding chloromethyl compound 1 by a modified Kornblum oxidation. The aldehyde function has been reacted with aromatic and heterocyclic primary amines to yield the imino compounds 3 , with hydrazino compounds to yield hydrazones 4 and with hydroxylamine or O‐substituted hydroxylamines to form the oximes 7—10 , which could be separated into pure E and Z‐isomers. The unsubstituted oxime 7 could be transformed to the carbonitrile 11 with 3,5‐dinitrobenzoylchloride. 2 could be condensed in presence of a base with the CH‐acidic 5‐position of 3‐aminorhodanine derivatives to yield 12 .  相似文献   

15.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

16.
The synthesis of the C2‐symmetrical (2R,5R)‐ and (2S,5S)‐2,5‐bis[(S)‐1‐(dibenzylaminoalkyl)]‐1,4‐dioxanes 1 or 2 in enantiopure form is reported. Compounds 1 and 2 were obtained by a completely selective and unusual cyclodimerization of chiral (2R,1′S)‐ or (2S,1′S)‐2‐(1‐aminoalkyl)epoxides 3 or 4 promoted by a mixture of diisopropylamine and boron trifluoride⋅diethyl etherate complex. The structure of the obtained dioxane was established by single‐crystal X‐ray diffraction analysis. A mechanism has been proposed to explain this transformation.  相似文献   

17.
The Suzuki–Miyaura cross‐coupling of 2‐nitrodiazonium tetrafluoroborate salts with substituted boronic acids is an effective and efficient means of preparing highly functionalized 2‐nitrobiphenyls in modest to excellent yield under extremely mild reaction conditions. Cross‐coupling of 2‐nitrodiazonium tetrafluoroborate salts with ortho‐methoxy‐ and benzyloxyphenylboronic acids was also demonstrated leading to the ortho‐ortho‐2‐nitrobiphenyls. Reductive cyclization of the 2‐nitrobiphenyl products allows for the overall three‐step synthesis of uniquely substituted carbazoles from readily available 2‐nitroanilines. The methodology was further highlighted by the short total synthesis of the carbazole alkaloids clausine V, N, C, and glycoborine.  相似文献   

18.
An efficient protocol for the highly regio‐ and stereoselective synthesis of 4‐(3′‐hydroxy‐2′‐iodoalk‐1′(Z)‐enyl)furan‐2(5H)‐one derivatives via selective iodohydroxylation of non‐heteroatom‐substituted allenes, i.e., 4‐allenyl‐2(5H)furanones, has been developed. The regio‐ and stereoselectivity of this reaction may be controlled by the electronic and steric effects of the furanone ring.  相似文献   

19.
Palladium‐catalysed monophosphorylation of (R)‐2,2′‐bisperfluoroalkanesulfonates of BINOL (RF=CF3 or C4F9) by a diaryl phosphinate [Ar2P(O)H] followed by phosphine oxide reduction (Cl3SiH) then lithium diisopropylamide‐mediated anionic thia‐Fries rearrangement furnishes enantiomerically‐pure (R)‐2′‐diarylphosphino‐2′‐hydroxy‐3′‐perfluoralkanesulfonyl‐1,1′‐binaphthalenes [(R)‐ 8ab and (R)‐ 8g–j ], which can be further diversified by Grignard reagent (RMgX)‐mediated CF3‐displacement [→(R)‐ 8c–f ]. Coupling of (R)‐ 8a–j with (S)‐1,1′‐binaphthalene‐2,2′‐dioxychlorophosphine (S)‐ 9 generates 3′‐sulfonyl BINAPHOS ligands (R,S)‐ 10a–j in good yields (43–82%). These new ligands are of utlility in the asymmetric hydrophosphonylation of styrene ( 1 ) by 4,4,5,5‐tetramethyl‐1,3,2‐dioxaphospholane 2‐oxide ( 2 ), for which a combination of the chiral ligands with either [Pd(Cp)(allyl)] or [Pd(allyl)(MeCN)2]+/NaCH(CO2Me)2 proves to be a convenient and active pre‐catalyst system. A combination of an electron‐rich phosphine moiety and an electron‐deficient 3′‐sulfone moiety provides the best enantioselectivity to date for this process, affording the branched 2‐phenethenephosphonate, (−)‐iso‐ 3 , in up to 74% ee with ligand (R,S)‐ 10i , where Ar=p‐anisyl and the 3′‐SO2R group is triflone.  相似文献   

20.
New types of P,N‐ligands, cis‐ and trans‐ 3 , containing a tetrahydroisoquinoline skeleton as an N‐donor were synthesized from (1R,2S)‐1‐phenylphospholane‐2‐carboxylic acid (phenyl‐P‐proline, 1 ). The cis isomer, cis‐ 3 , was found to act as an excellent ligand in palladium‐catalyzed asymmetric allylic substitution reactions. The reactions of 1,3‐diphenyl‐2‐propenyl acetate ( 5 ) with several nucleophiles in the presence of [Pd(π‐allyl)Cl]2, cis‐ 3 (Pd : ligand=1 : 2), and a base afforded the desired products in high yields with high enantioselectivity. It was suggested that these ligands did not serve as P,N‐bidentate ligands but as P‐monodentate ligands in these reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号