首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
将语音信号处理领域的隐马尔科夫模型HMM引入DC/DC变换器故障检测。在简要介绍HMM及其优点的基础上,提出了一种基于HMM的DC/DC变换器故障检测方法。首先分析开关电源的失效机理,选择输出电压、电感电流作为特征参数;然后对每个状态的观察样本序列训练并建立HMM模型;最后以典型boost电路模型进行了仿真实验。实验结果表明该方法能可靠识别内部故障,效果明显,并且所需样本少,训练速度快。  相似文献   

2.
开关稳压电源广泛应用于各种电子设备中,其中DC/DC开关变换器是开关稳压电源的核心部件,一旦发生故障将影响整个电子设备的正常运行.隐马尔科夫模型(HMM)广泛应用于动态序列检测.针对开关稳压电源容易失效的特点,应用HMM对BOOST变换器的故障进行了检测.根据电路原理将故障分类,并对每一故障进行50次验证,验证使用HMM检测变换器故障的可行性.该方法训练速度快,所需样本少,识别度高,具有很高的应用价值.  相似文献   

3.
J波检测在临床上可以作为判定某些心脏病的一种非创性的标记手段。主要定义了5个精确反映J波特性的特征向量,包括3个时域特征向量和两个基于小波的特征向量,并使用主成分分析减少特征向量的维数,作为分类器的输入。利用这些特征向量训练隐马尔可夫模型作为分类器,输出最终的判定结果。结果表明,提出的方法提供了93.8%的平均准确度、94.2%的平均敏感性、93.3%的平均特异性和93.4%的平均阳性预测值,揭示了很高的评价标准,表明该方法有能力准确地检测识别J波,并且可以利用该方法检测心电图中的其他病变波形。  相似文献   

4.
基于隐马尔科夫模型的用户行为异常检测方法   总被引:1,自引:0,他引:1  
提出了一种基于HMM的用户行为异常检测的新方法,用shell命令序列作为审计数据,但在数据预处理、用户行为轮廓的表示方面与现有方法不同。仿真实验结果表明,本方法的检测效率和实时性相对较高,在检测准确率方面也有较大优势。  相似文献   

5.
基于隐马尔可夫模型的火焰检测   总被引:1,自引:0,他引:1       下载免费PDF全文
吴铮  孙立  汪亚明  夏一民 《计算机工程》2008,34(20):213-214
提出一种利用隐马尔可夫模型对普通视频中的火焰进行分析的方法,除应用运动和颜色分析对火焰进行识别外,还通过隐马尔可夫模型对火焰的闪烁特性进行分析。实验结果表明,该方法能有效区分火焰和具有火焰颜色的普通运动物体,减少了火灾监测中误报警的次数,具有一定的实际意义。  相似文献   

6.
基于小波隐马尔科夫模型的控制过程异常数据检测方法   总被引:1,自引:0,他引:1  
刘芳  毛志忠 《控制与决策》2011,26(8):1187-1191
针对小波异常信号检测原理的局限性,提出了适用于过程数据的基于小波隐马尔可夫模型(W-HMM)的异常数据检测方法.首先在一定尺度下对检测信号进行分解,将频率组分不同于其他大部分信号的信号作为异常信号;然后通过计算待检测信号的小波系数与正常信号小波系数的相似概率,并利用求取隐马尔可夫模型(HMM)最优状态链的Viterbi算法对数据进行最终判断;最后通过数值验证和应用表明了所提出的检测算法的有效性和实用性.  相似文献   

7.
基于离散变结构控制的DC/DC变换器   总被引:3,自引:0,他引:3       下载免费PDF全文
运用趋近律形式的离散变结构控制原理,设计了Buck型DC/DC变换器.设计方法简单,易于实现.通过仿真和实验证实了离散变结构控制具有系统内部参数变化时的鲁棒性,并改善了系统的稳态性能.  相似文献   

8.
基于隐马尔科夫模型和神经网络的入侵检测研究   总被引:1,自引:0,他引:1  
针对目前的基于隐马尔科夫模型的入侵检测和基于神经网络入侵检测各自的不足之处,提出一种基于隐马尔科夫模型和神经网络的混合入侵检测方法。主要是从网络协议的角度入手,把TCP数据包作为分析对象,给出一种确定观察值的方法,把隐马尔科夫模型的输出作为神经网络的输入,神经网络的输出是最终的结果。最后通过实验证明了此混合入侵检测方法比单独使用隐马尔科夫模型或者是单独使用神经网络的检测方法有更低的误报率和漏报率。  相似文献   

9.
基于隐马尔可夫模型的异常检测   总被引:4,自引:1,他引:4  
首先建立了一个计算机系统运行状况的隐马尔可夫模型 ,然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法 ,这个算法根据最大信息熵原理 ,通过比较固定长度系统行为序列的平均信息熵和一个预先给定的阈值来检测入侵行为 .论文还给出了该模型的训练算法 .这个检测算法的优点是准确率高 ,算法简单 ,占用的存储空间很小 ,适合用于在计算机系统上进行实时检测  相似文献   

10.
设计一种基于电流模式的非线性控制器.控制器由电感电流的比例控制和电容电压的非线性比例积分控制两部分组成.对某DC/DC升压变换器的仿真结果表明,上述控制器是可行的.  相似文献   

11.
通过人走路的姿势实现对个人身份的远距离识别和认证是当前生物特征识别研究领域的一个研究热点。算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行人体运动的静态形状描述,采用连续隐马尔可夫模型对人体运动时从一个动作到另一个动作的过渡进行动态描述。算法在CMU数据库上面进行实验取得了较高的正确识别率。  相似文献   

12.
基于隐马尔可夫模型的入侵检测系统   总被引:4,自引:1,他引:4  
首先介绍了基于隐马尔可夫模型(HMM)的入侵检测系统(IDS)框架,然后建立了一个计算机系统运行状况的隐马尔可夫模型,最后通过实验论述了该系统的工作过程。通过仅仅考虑基于攻击域知识的特权流事件来缩短建模时间并提高性能,从而使系统更加高效。实验表明,用这种方法建模的系统在不影响检测率的情况下,比传统的用所有数据建模大大地节省了模型训练的时间,降低了误报率。因此,适合用于在计算机系统上进行实时检测。  相似文献   

13.
基于Multi-stream Combined隐马尔柯夫模型源端检测DDoS攻击   总被引:1,自引:0,他引:1  
康健  李强  张原 《计算机应用》2007,27(8):1884-1887
提出了一种新颖的综合考虑多维观测特征的DDoS攻击源端检测方法。该方法引入S-D-P特征概念,并抽取TCP/IP包头中的标志位和ID字段构成多维观测特征,采用Multi-stream Combined隐马尔可夫模型(MC-HMM)在源端网络检测DDoS攻击。大量实验表明,MC-HMM方法克服了基于一维观测特征的检测算法信息量过小的固有缺陷,能够有效降低检测的误报率和漏报率,提高DDoS攻击源端检测精度。  相似文献   

14.
传统的HOG算法针对整幅图像进行行人特征提取,大量的非人窗口计算必然降低检测的准确率和效率。为此,提出一种基于OTSU分割和HOG特征的行人检测与跟踪方法。利用OTSU算法以最佳阈值分割图像,在分割区域的基础上进行Canny边缘检测,通过边缘的对称性计算确定行人候选区,继而采用经PCA方法降维后的HOG特征和隐马尔可夫模型对行人候选区进行检测验证。最后,以确定的行人区域为跟踪窗口,利用CamShift算法跟踪行人。多组实验结果证明,本文方法的行人检测效率和精度均有所提高,跟踪性能稳定、可靠。  相似文献   

15.
刘亚清  陈荣 《计算机工程》2009,35(18):25-27
针对Web信息抽取领域中存在的“项缺失”和“项无序”问题,提出一种基于隐马尔可夫模型的Web信息抽取方法。将Web文档解析为一棵扩展的DOM树,映射待抽取的信息项为状态,映射待抽取的信息项在扩展DOM树中的路径为词汇,使用归纳算法构造隐马尔可夫模型。实验结果证明该方法可以获得更好的抽取性能。  相似文献   

16.
针对采用梅尔倒谱系数(MFCC)表征异常声音时识别率低下问题,提出获取MFCC的改进方法,包括对公共场所典型异常声音信号的特性分析和MFCC提取过程中滤波器组的重新设计。基于公共场所异常声音数据库的实验结果表明,与MFCC特征提取方法相比,该方法提高了特征参数在识别系统中的效率,具有一定的优越性和实用性。  相似文献   

17.
伴随虚拟现实(Virtual Reality,VR)技术的发展,以及人们对人机交互性能和体验感的要求提高,手势识别作为影响虚拟现实中交互操作的重要技术之一,其精确度急需提升[1].针对当前手势识别方法在一些动作类似的手势识别中表现欠佳的问题,提出了一种多特征动态手势识别方法.该方法首先使用体感控制器Leap Motion追踪动态手势获取数据,然后在特征提取过程中增加对位移向量角度和拐点判定计数的提取,接着进行动态手势隐马尔科夫模型(Hidden Markov Model,HMM)的训练,最后根据待测手势与模型的匹配率进行识别.从实验结果中得出,该多特征识别方法能够提升相似手势的识别率.  相似文献   

18.
刘卫  李和成 《计算机应用》2012,32(8):2309-2312
针对传统隐马尔可夫模型(HMM)在对手写维吾尔文字符建模时,字符宽度变化大,模型训练收敛缓慢,且易陷入局部极值的问题,提出一种基于保局投影(LPP)与HMM相结合的维吾尔字符识别方法。首先,通过高度归一化保持原图像的宽高比,用滑动窗获取子图像序列,形成观测向量序列;其次,采用局部保持投影将观测序列映射到低维空间,并用随机抽样方法降低邻接图矩阵的规模;最后,采用新观测序列训练HMM。该算法在降维的同时提高了HMM的收敛速度,降低了陷入局部极值的风险。实验结果显示,算法的平均收敛步数减少,错误率降低,表明算法是有效的。  相似文献   

19.
当前VxWorks操作系统缺少内存碎片的检测机制。通过增加内存统计信息,基于隐马尔可夫模型的检测程序分析出系统中哪些任务可能是造成内存碎片的根源。软件开发人员根据分析结果对可能造成内存碎片的代码进行优化,且优化前后的分析数据表明内存碎片问题得到了有效的改善,可满足嵌入式设备减少内存碎片的需求。  相似文献   

20.
经典的隐马尔可夫模型(HMM)是一种基于统计信号的模型,它在基于内容的音频检索系统中具有重要的作用。根据音频分类重类型轻内容的特性,将单状态的HMM用于音频分类,克服了多状态HMM在模型初始化时状态初始概率和转移概率赋值带有假设不准确的缺点。实验结果表明基于单状态的HMM模型音频分类方法能有效地减少误识率,提高音频分类的精确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号