共查询到19条相似文献,搜索用时 109 毫秒
1.
将语音信号处理领域的隐马尔科夫模型HMM引入DC/DC变换器故障检测。在简要介绍HMM及其优点的基础上,提出了一种基于HMM的DC/DC变换器故障检测方法。首先分析开关电源的失效机理,选择输出电压、电感电流作为特征参数;然后对每个状态的观察样本序列训练并建立HMM模型;最后以典型boost电路模型进行了仿真实验。实验结果表明该方法能可靠识别内部故障,效果明显,并且所需样本少,训练速度快。 相似文献
2.
3.
4.
5.
计算机系统入侵检测的隐马尔可夫模型 总被引:32,自引:0,他引:32
入侵检测技术作为计算机安全技术的一个重要组成部分,现在受到越来越广泛的关注,首先建立了一个计算机系统运行状况的隐马尔可夫模型(HMM),然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法,以及该模型的训练算法。这个算法的优点是准确率高,算法简单,占用的存储空间很小,适合用于在计算机系统上进行实时检测。 相似文献
6.
7.
基于小波隐马尔科夫模型的控制过程异常数据检测方法 总被引:1,自引:0,他引:1
针对小波异常信号检测原理的局限性,提出了适用于过程数据的基于小波隐马尔可夫模型(W-HMM)的异常数据检测方法.首先在一定尺度下对检测信号进行分解,将频率组分不同于其他大部分信号的信号作为异常信号;然后通过计算待检测信号的小波系数与正常信号小波系数的相似概率,并利用求取隐马尔可夫模型(HMM)最优状态链的Viterbi算法对数据进行最终判断;最后通过数值验证和应用表明了所提出的检测算法的有效性和实用性. 相似文献
8.
9.
基于隐马尔科夫模型和神经网络的入侵检测研究 总被引:1,自引:0,他引:1
针对目前的基于隐马尔科夫模型的入侵检测和基于神经网络入侵检测各自的不足之处,提出一种基于隐马尔科夫模型和神经网络的混合入侵检测方法。主要是从网络协议的角度入手,把TCP数据包作为分析对象,给出一种确定观察值的方法,把隐马尔科夫模型的输出作为神经网络的输入,神经网络的输出是最终的结果。最后通过实验证明了此混合入侵检测方法比单独使用隐马尔科夫模型或者是单独使用神经网络的检测方法有更低的误报率和漏报率。 相似文献
10.
基于隐马尔可夫模型的异常检测 总被引:4,自引:1,他引:4
首先建立了一个计算机系统运行状况的隐马尔可夫模型 ,然后在此模型的基础上提出了一个用于计算机系统实时异常检测的算法 ,这个算法根据最大信息熵原理 ,通过比较固定长度系统行为序列的平均信息熵和一个预先给定的阈值来检测入侵行为 .论文还给出了该模型的训练算法 .这个检测算法的优点是准确率高 ,算法简单 ,占用的存储空间很小 ,适合用于在计算机系统上进行实时检测 相似文献
11.
随着网络攻击的不断多样化,现有的协议异常检测工作在准确率和实时性方面面临新的挑战。针对目前的协议异常检测方法只面向单一协议的恶意攻击而未考虑协议之间的关联,提出一种基于HMM的协议异常交叉检测算法。使用多个协议的语义关键词和时间标记来构造报文序列作为模型的训练集,提出协议报文语义合并算法并结合Baum-Welch算法构建多协议交叉的HMM,在序列化协议报文的同时收集子序列重复数来进一步校验HMM对存在大量循环操作的攻击行为的检测。通过在视频监控网络中进行仿真实验,证明该检测算法同现有的HMM异常检测方法相比,可以更准确地检测多种恶意攻击,同时具有一定的通用性。 相似文献
12.
基于Multi-stream Combined隐马尔柯夫模型源端检测DDoS攻击 总被引:1,自引:0,他引:1
提出了一种新颖的综合考虑多维观测特征的DDoS攻击源端检测方法。该方法引入S-D-P特征概念,并抽取TCP/IP包头中的标志位和ID字段构成多维观测特征,采用Multi-stream Combined隐马尔可夫模型(MC-HMM)在源端网络检测DDoS攻击。大量实验表明,MC-HMM方法克服了基于一维观测特征的检测算法信息量过小的固有缺陷,能够有效降低检测的误报率和漏报率,提高DDoS攻击源端检测精度。 相似文献
13.
基于隐马尔可夫模型的入侵检测系统 总被引:4,自引:1,他引:4
首先介绍了基于隐马尔可夫模型(HMM)的入侵检测系统(IDS)框架,然后建立了一个计算机系统运行状况的隐马尔可夫模型,最后通过实验论述了该系统的工作过程。通过仅仅考虑基于攻击域知识的特权流事件来缩短建模时间并提高性能,从而使系统更加高效。实验表明,用这种方法建模的系统在不影响检测率的情况下,比传统的用所有数据建模大大地节省了模型训练的时间,降低了误报率。因此,适合用于在计算机系统上进行实时检测。 相似文献
14.
15.
基于HMM的开关电源故障预测方法研究 总被引:1,自引:0,他引:1
故障预测技术在提高设备的安全性、减少生命周期费用和提高维修保障效率等方面发挥了重要作用;采用隐马尔可夫模型(HMM)的故障预测方法,解决了Buck型开关电源的故障预测问题;详细分析了开关电源健康退化过程,并选择输出纹波电压、电感电流和输出功率作为监测参数;利用各个状态的样本序列来训练HMM,然后利用该模型对待测信号的观测序列进行测试,从而获得待测信号的似然概率,预测设备当前所在状态;实验结果表明,该方法可以准确地对开关电源进行故障预测。 相似文献
16.
通过人走路的姿势实现对个人身份的远距离识别和认证是当前生物特征识别研究领域的一个研究热点。算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行人体运动的静态形状描述,采用连续隐马尔可夫模型对人体运动时从一个动作到另一个动作的过渡进行动态描述。算法在CMU数据库上面进行实验取得了较高的正确识别率。 相似文献
17.
18.
文章从HMM的基本思想、概念出发,建立了以捕获的网络数据包为观测对象的HMM异常检测原型。对原型中存在的可见符号集太大的问题,提出了对观测对象进行分段的改进办法,进而建立了具有可操作性的HMM异常检测模型。在观测对象的概率计算方面,引入了滑动窗口的概念,解决了概率值过小的问题。对模型的训练,给出了模型训练算法、矩阵B的更新公式。 相似文献
19.
提出一种基于HMM和DTW在线手写签名认证方法的改进方法。该方法使用签名关键点和关键点的特征值进行签名的状态划分和状态匹配,实现类内签名状态划分的一致性。并利用在线手写签名二维信息的DTW距离作为签名隐马尔科夫模型的状态观测值,构建二级签名隐马尔科夫模型认证框架进行签名认证,得到较好的认证效果。实验结果表明,认证的准确率能达到93%左右。 相似文献